1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka94
2 years ago
14

An object increases its velocity from 22 m/s to 36 m/s in 5 s. What is the acceleration of the

Physics
1 answer:
gregori [183]2 years ago
6 0

Explanation:

Using Kinematics,

we have a = (v - u) / t.

Therefore a = (36m/s - 22m/s) / 5s = 2.8m/s².

You might be interested in
If a car used 260.000 W of power to complete a race in 15 s. how much work did the car do?
marta [7]

Work done by the car is 3900 J

Explanation:

  • Power and work are related by the equation, Power = Work Done/Time
  • Power is the rate at which work is done.
  • Here, the car uses power of 260 W and time taken is 15 s.

Work Done = Power × Time

                   = 260 × 15 = 3900 J

3 0
3 years ago
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
3 years ago
Read 2 more answers
the refractive index is the blank of the speed of light in a medium to the speed of light in a vacuum
andrew11 [14]

Answer:ratio

Explanation:

8 0
3 years ago
Read 2 more answers
Subduction occurs at which of the following tectonic plate boundaries?
exis [7]
When two tectonic plates collide and form a converging plate boundry, normally one of the plates will slide underneath the other and that is when Subduction occurs.
5 0
3 years ago
A capacitor with a very large capacitance is in series with a capacitor that has a very small capacitance. what can we say about
Misha Larkins [42]
<span>A capacitor with a very large capacitance is in series with a capacitor
that has a very small capacitance.

The capacitance of the series combination is slightly smaller than the
capacitance of the small capacitor. (choice-C)

The capacitance of a series combination is

             1 / (1/A + 1/B + 1/C + 1/D + .....) .

If you wisk, fold, knead, and mash that expression for a while,
you find that for only two capacitors in series, (or 2 resistors or
two inductors in parallel), the combination is   

             (product of the 2 individuals) / (sum of the individuals)  .

In this problem, we have a humongous one and a tiny one.
Let's call them  1000  and  1 .
Then the series combination is

           (1000 x 1) / (1000 + 1)

        =       (1000) / (1001)

        =         0.999 000 999 . . . 

which is smaller than the smaller individual.

It'll always be that way.   </span>
5 0
3 years ago
Other questions:
  • An engine draws energy from a hot reservoir with a temperature of 1250 K and exhausts energy into a cold reservoir with a temper
    5·1 answer
  • Pendulum A has a bob of mass m hung from the string of length L; pendulum B is identical to A except its bob has the length 2L.
    12·1 answer
  • 13. What's most intriguing about Titan's atmosphere?
    11·1 answer
  • Diamond has an index of refraction of 2.419. What is the critical angle for internal reflection inside a diamond that is in air?
    5·1 answer
  • How does the law of conservation of mass apply to this reaction:Al+3HCl--&gt;H2+AlCl3
    9·1 answer
  • Describe transmission
    11·1 answer
  • How to measure the weight of an object??? HELP! ​
    7·1 answer
  • Write down the unit of mass ,temperature ,power and density​
    5·2 answers
  • When a 15.00 kg mass is attached to a vertical spring, the spring is stretched 2.0 m such that the mass is 6.0 m above the table
    7·1 answer
  • A bicyclist steadily speeds up from rest to 6.00m/s in 7.30s.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!