To solve this problem it is necessary to apply the law of Malus which describes the change in the Intensity of Light when it crosses a polarized surface.
Mathematically the expression is given as

Where,
= Initial Intensity
I = Final Intensity after pass through the polarizer
= Angle between the polarizer and the light
Since it is sought to reduce the intensity by half the relationship between the two intensities will be given as

Using the Malus Law we have,





Angle with respect to maximum is 
Answer:
<em>Answer: positive velocity & negative acceleration</em>
Explanation:
<u>Accelerated Motion</u>
Both the velocity and acceleration are vectors because they have magnitude and direction. When the motion is restricted to one dimension, i.e. left-right or up-down, the direction is marked with the sign according to some preset reference.
The locomotive is moving at a certain speed with a (so far) unknown sign but the acceleration has a negative sign. Since the locomotive comes to a complete stop it means the velocity and the acceleration are of opposite signs.
Thus the velocity is positive.
Answer: positive velocity & negative acceleration
Scalar quantities have only a magnitude. So the answer is scalar quantities.
Change in state(from liquid to solid) and change in colour I believe.
Answer: 0.0146m
Explanation: The formula that defines the velocity of a simple harmonic motion is given as
v = ω√A² - x²
Where v = linear velocity, A = amplitude = 1.69cm = 0.0169m, x = displacement.
The maximum speed of a simple harmonic motion is derived when x = A, hence v = ωA
One half of maximum speed = speed of motion
3ωA/2 = ω√A² - x²
ω cancels out on both sides of the equation, hence we have that
A/2 = √A² - x²
(0.0169)/2 = √(0.0169² - x²)
0.00845 = √(0.0169² - x²)
By squaring both sides, we have that
0.00845² = 0.0169² - x²
x² = 0.0169² - 0.00845²
x² = 0.0002142
x = √0.0002142
x = 0.0146m