Answer:
The speed of the baseball is approximately 19.855 m/s
Explanation:
From the question, we have;
The frequency of the microwave beam emitted by the speed gun, f = 2.41 × 10¹⁰ Hz
The change in the frequency of the returning wave, Δf = +3190 Hz higher
The Doppler shift for the microwave frequency emitted by the speed gun which is then reflected back to the gun by the moving baseball is given by 2 shifts as follows;


Where;
Δf = The change in frequency observed, known as the beat frequency = 3190 Hz
= The speed of the baseball
c = The speed of light = 3.0 × 10⁸ m/s
f = The frequency of the microwave beam = 2.41 × 10¹⁰ Hz
By plugging in the values, we have;


The speed of the baseball,
≈ 19.855 m/s
Answer:
The new time period is 
Explanation:
From the question we are told that
The period of oscillation is 
The new length is 
Let assume the original length was 
Generally the time period is mathematically represented as

Now I is the moment of inertia of the stick which is mathematically represented as

So

Looking at the above equation we see that

=>
=> 
=> 
Acceleration means speeding up, slowing down, or changing direction. The graph doesn't show anything about direction, so we just have to examine it for speeding up or slowing down ... any change of speed.
The y-axis of this graph IS speed. So the height of a point on the line is speed. If the line is going up or down, then speed is changing.
Sections a, c, and d are all going up or down. Section b is the only one where speed is not changing. So we can't be sure about b, because we don't know if the track may be curving ... the graph can't tell us that. But a, c, and d are DEFINITELY showing acceleration.
a. 27
after that all you need to do is use the work formula as you will be able to acheive results
1 nanowatt = 1 nanojoule/sec
1 watt = 1 joule/sec
10 watts = 10 joules/sec
100 watts = 100 joules/sec
742.914 watts = 742.914 joules/sec
1,000 watts = 1,000 joules/sec
10,000 watts = 10,000 joules/sec
100,000 watts = 100,000 joules/sec
1 megawatt = 1 megajoule/sec
1 gigawatt = 1 gigajoule/sec
1 petawatt = 1 petajoule/sec
We don't care what frequency the transmission is using,
or who their morning DJ is.