Answer:
Bone
Explanation:
Diagnostic radiology include the use of non-invasive imaging scans to diagnose a patient.
The voltages used in diagnostic tubes range from roughly 20 kV to 150 kV and thus the highest energies of the X-ray photons range from roughly 20 keV to 150 keV.
The tests and equipment used sometimes involves low doses of radiation to create highly detailed images of an area.
Hi alexander it is very true air pollution is only caused by human activity
Answer:
The initial velocity was U=22.14m/s
Explanation:
Step one :
Applying the third equation of motion
v² = u²+ 2as
Where v= Final velocity
U =initial velocity
a= acceleration due to gravity
S= distance or displacement
Step two :
V= 0
a= 9.81m/s²
S=25m
U=?
Step three :
Substituting into the equation we have
0²=U²+2*9.81*25
0=U²+490.5
U²=-490.5
U=√490.5
U=22.14m/s
Answer:
In a controlled experiment, an independent variable (the cause) is systematically manipulated and the dependent variable (the effect) is measured; any extraneous variables are controlled. The researcher can operationalize (i.e. define) the variables being studied so they can be objectivity measured.
Answer:
The energy of an electron in an isolated atom depends on b. n only.
Explanation:
The quantum number n, known as the principal quantum number represents the relative overall energy of each orbital.
The sets of orbitals with the same n value are often referred to as an electron shell, in an isolated atom all electrons in a subshell have exactly the same level of energy.
The principal quantum number comes from the solution of the Schrödinger wave equation, which describes energy in eigenstates
, and for the case of an hydrogen atom we have:

Thus for each value of n we can describe the orbital and the energy corresponding to each electron on such orbital.