(a) Differentiate the position vector to get the velocity vector:
<em>r</em><em>(t)</em> = (3.00 m/s) <em>t</em> <em>i</em> - (4.00 m/s²) <em>t</em>² <em>j</em> + (2.00 m) <em>k</em>
<em>v</em><em>(t)</em> = d<em>r</em>/d<em>t</em> = (3.00 m/s) <em>i</em> - (8.00 m/s²) <em>t</em> <em>j</em>
<em></em>
(b) The velocity at <em>t</em> = 2.00 s is
<em>v</em> (2.00 s) = (3.00 m/s) <em>i</em> - (16.0 m/s) <em>j</em>
<em></em>
(c) Compute the electron's position at <em>t</em> = 2.00 s:
<em>r</em> (2.00 s) = (6.00 m) <em>i</em> - (16.0 m) <em>j</em> + (2.00 m) <em>k</em>
The electron's distance from the origin at <em>t</em> = 2.00 is the magnitude of this vector:
||<em>r</em> (2.00 s)|| = √((6.00 m)² + (-16.0 m)² + (2.00 m)²) = 2 √74 m ≈ 17.2 m
(d) In the <em>x</em>-<em>y</em> plane, the velocity vector at <em>t</em> = 2.00 s makes an angle <em>θ</em> with the positive <em>x</em>-axis such that
tan(<em>θ</em>) = (-16.0 m/s) / (3.00 m/s) ==> <em>θ</em> ≈ -79.4º
or an angle of about 360º + <em>θ</em> ≈ 281º in the counter-clockwise direction.
Answer:
Explanation:
During a car collision momentum of vehicle ceases within a fraction of seconds so Force due to the impulse is huge.
Impulse is defined as the product of average force and time. If we can increase the period of collision for the same impulse then the average force imparted will be less.
If we can increase the time period then damage due to collision will be less.
SM/LAN which would demonstrate that there is a Cisco Internal Services Module or a remote LAN card. LAN interfaces the PC equipment in a confined territory, for example, an office or home. Normally, LANs utilize wired associations with connect the PCs to each other and to an assortment of fringe gadgets, for example, printers. LAN clients can speak with each other by talk or email.
Answer:
The distance of m2 from the ceiling is L1 +L2 + m1g/k1 + m2g/k1 + m2g/k2.
See attachment below for full solution
Explanation:
This is so because the the attached mass m1 on the spring causes the first spring to stretch by a distance of m1g/k1 (hookes law). This plus the equilibrium lengtb of the spring gives the position of the mass m1 from the ceiling. The second mass mass m2 causes both springs 1 and 2 to stretch by an amout proportional to its weight just like above. The respective stretchings are m2g/k1 for spring 1 and m2g/k2 for spring 2. These plus the position of m1 and the equilibrium length of spring 2 L2 gives the distance of L2 from the ceiling.