Ans:
12500 N/C
Explanation:
Side of square, a = 2.42 m
q = 4.25 x 10^-6 C
The formula for the electric field is given by

where, K be the constant = 9 x 10^9 Nm^2/c^2 and r be the distance between the two charges
According to the diagram
BD = 
where, a be the side of the square
So, Electric field at B due to charge at A


EA = 6531.32 N/C
Electric field at B due to charge at C


Ec = 6531.32 N/C
Electric field at B due to charge at D


ED = 3265.66 N/C
Now resolve the components along X axis and Y axis
Ex = EA + ED Cos 45 = 6531.32 + 3265.66 x 0.707 = 8840.5 N/C
Ey = Ec + ED Sin 45 = 6531.32 + 3265.66 x 0.707 = 8840.5 N/C
The resultant electric field at B is given by


E = 12500 N/C
Explanation:
It carry its loads from the sand and outher partials in it
The question is incomplete. Here is the complete question.
Three crtaes with various contents are pulled by a force Fpull=3615N across a horizontal, frictionless roller-conveyor system.The group pf boxes accelerates at 1.516m/s2 to the right. Between each adjacent pair of boxes is a force meter that measures the magnitude of the tension in the connecting rope. Between the box of mass m1 and the box of mass m2, the force meter reads F12=1387N. Between the box of mass m2 and box of mass m3, the force meter reads F23=2304N. Assume that the ropes and force meters are massless.
(a) What is the total mass of the three boxes?
(b) What is the mass of each box?
Answer: (a) Total mass = 2384.5kg;
(b) m1 = 915kg;
m2 = 605kg;
m3 = 864.5kg;
Explanation: The image of the boxes is described in the picture below.
(a) The system is moving at a constant acceleration and with a force Fpull. Using Newton's 2nd Law:




Total mass of the system of boxes is 2384.5kg.
(b) For each mass, analyse each box and make them each a free-body diagram.
<u>For </u>
<u>:</u>
The only force acting On the
box is force of tension between 1 and 2 and as all the system is moving at a same acceleration.


= 915kg
<u>For </u>
<u>:</u>
There are two forces acting on
: tension caused by box 1 and tension caused by box 3. Positive referential is to the right (because it's the movement's direction), so force caused by 1 is opposing force caused by 3:


= 605kg
<u>For </u>
<u>:</u>


= 864.5kg
We will use the formula p = mgh
p is potential energy.
m is mass of object in kg
g is acceleration due to gravity (9.8m/s²)
h is height of the objects displacement in meters.
p = mgh → mgh = p → h = p / mg
p is 14000j, m is 40kg and g is 9.8 m/s²
h = 14000 / 40 × 9.8 → h = 1400 / 392 → h = 35.7
Therefore , the cannonball was 35.7 meters high .