Body waves travel through the interior of the Earth. Surface waves travel across the surface. Surface waves decay more slowly with distance than body waves which travel in three dimensions. Particle motion of surface waves is larger than that of body waves, so surface waves tend to cause more damage.
https://en.m.wikipedia.org › wiki
"The rock has a downward acceleration of 9.8 m/s2" is the one among the following choices that explains the <span>rock’s acceleration at the instant that it reaches the top of its trajectory (where its velocity is momentarily zero). The correct option among all the options that are given in the question is option "D". </span>
Answer:
0.800 m/s²
Explanation:
First, calculate the angular acceleration:
ω = αt + ω₀
6.00 rad/s = α (3.00 s) + 0 rad/s
α = 2.00 rad/s²
Now calculate the angular velocity at t = 2.00 s:
ω = αt + ω₀
ω = (2.00 rad/s²) (2.00 s) + 0 rad/s
ω = 4.00 rad/s
Calculate the linear velocity:
v = ωr
v = (4.00 rad/s) (0.0500 m)
v = 0.200 m/s
Finally, calculate the centripetal acceleration:
a = v² / r
a = (0.200 m/s)² / (0.0500 m)
a = 0.800 m/s²
Answer:
4
Explanation:
because people could lie about it