Answer:
Explanation:
The attraction weakens. Two objects that are farther apart are not drawn together as strongly as if they were close together.
P=I^2 *R
600 =5.0^2 *R
R=24
Answer: 24 ohms
I hope it’s correcttttttt...
Answer:
5.09 x 10⁵ Nm²/C
Explanation:
The electric flux φ through a planar area is defined as the electric field Ε times the component of the area Α perpendicular to the field. i.e
φ = E A
From the question;
E = (8.0j + 2.0k) ✕ 10³ N/C
r = radius of the circular area = 9.0m
A = area of a circle = π r² [Take π = 3.142]
A = 3.142 x 9² = 254.502m²
Now, since the area lies in the x-y plane, only the z-component of the electric field is responsible for the electric flux through the circular area.
Therefore;
φ = (2.0) x 10³ x 254.502
φ = 5.09 x 10⁵ Nm²/C
The electric flux is 5.09 x 10⁵ Nm²/C
Answer:
C. a small charged particle.
Explanation:
typically beta radiation emits an electron which is a small negativity charged particle.
hope it helps. :)
Answer:
The object will rotate with constant angular acceleration
Explanation:
According to the Newton's Second Law for Whenever there is more than one torque acting on a rigid body that posses fixed axis, the moment of inertia as well as the angular acceleration is equals or proportional to the summation of the torques. It gives details on the relationship between rotational kinematics and torque as well as moment of inertia. This can be represented by the below equation.
∑iτi=Iα.
.Therefore when constant net torque is applied to object that is rotating, the object will rotate with constant angular acceleration