Here, you need to use your "Protractor" as it is given in the question, but we can calculate the value with the help of our mathematical calculation too:
[ Protractor can be use only in real life, not here ]
Draw an imaginary line from initial position to final position.
Now, In that triangle, tan x = P/B
tan x = 1.4 / 2
tan x = 0.70
x = tan⁻¹ (0.70)
x = 35 [ tan 35 = 0.70 ]
In short, Your Answer would be 35 degrees
Hope this helps!
Electric force depends on the charge and the strength of the electric field. The equation that relates the three:
F = Eq where q is the charge and E is the electric field strength.
You can tell because the line bends and the closer it is to horizontal or past horizontal it is more dense
Motion is physics. motion is the displacement,distance,velocity, acceleration, time, and speed.
Answer:
a) k= 3232.30 N / m, b) f = 4,410 Hz
Explanation:
In this exercise, the car + spring system is oscillating in the form of a simple harmonic motion, as the four springs are in parallel, the force is the sum of the 4 Hocke forces.
The expression for the angular velocity is
w = √k/m
the angular velocity is related to the period
w = 2π / T
we substitute
T = 2
√m/ k
a) empty car
k = 4π² m / T²
k = 4 π² 1310/2 2
k = 12929.18 N / m
This is the equivalent constant of the short springs
F1 + F2 + F3 + F4 = k_eq x
k x + kx + kx + kx = k_eq x
k_eq = 4 k
k = k_eq / 4
k = 12 929.18 / 4
k= 3232.30 N / m
b) the frequency of oscillation when carrying four passengers.
In this case the plus is the mass of the vehicle plus the masses of the passengers
m_total = 1360 + 4 70
m_total = 1640 kg
angular velocity and frequency are related
w = 2pi f
we substitute
2 pi f = Ra K / m
in this case the spring constant changes us
k_eq = 12929.18 N / m
f = 1 / 2π √ 12929.18 / 1640
f = π / 2 2.80778
f = 4,410 Hz