I think the correct answer would be B. The process of electroplating uses a direct current in order to give a cheap metal the apperance and resistance of a more expensive metal by coating it with a certain metal. The current reduces the dissolved metal ions to form a thin coating on a surface.
Answer: A. Exothermic reaction
Explanation: Enthalpy change for a reaction is sum of enthalpy of formation of products minus sum of enthalpy of formation of reactants.
When the energy level of reactants is above as compared to the products, the reaction is exothermic and when its opposite then reaction is endothermic.
From given information, the potential energy diagram starts at 380 kJ means the energy level of reactants is 380 kJ. It ends at 100 kJ means the energy of products is 100 kJ.
Enthalpy of reaction = 100 kJ - 380 kJ
Enthalpy of reaction = -280 kJ
Negative sign of enthalpy change indicates an Exothermic reaction.
The balanced chemical reaction describing this decomposition is as follows:
<span>4c3h5n3o9 .............> 6N2 + 12CO2 +10H2O + O2
From the periodic table:
mass of oxygen = 16 grams
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of carbon = 12 grams
Therefore:
mass of </span><span>C3H5N3O9 = 3(12) + 5(1) + 3(14) + 9(16) = 227 grams
mass of O2 = 2(16) = 32 grams
From the balanced chemical equation:
4(227) = 908 grams of </span>C3H5N3O9 produce 32 grams of O2. Therefore, to know the amount of oxygen produced from 4.5*10^2 grams <span>C3H5N3O9, all we need to do is cross multiplication as follows:
amount of oxygen = (4.5*10^2*32) / (908) = 15.859 grams</span>
Answer:
The reactant/reagent that would be most atom economical is EtI (Ethy Iodide) and KOH (potassium oxide) as base
This is because the iodo group are weak base hence they have a good leaving character (i.e they are unstable on their own ) which would increase the rate of reaction and the strong base KOH give the most atom economical
Explanation:
1234567891011121314151617181920