Answer:
ΔG° = -533.64 kJ
Explanation:
Let's consider the following reaction.
Hg₂Cl₂(s) ⇄ Hg₂²⁺(aq) + 2 Cl⁻(aq)
The standard Gibbs free energy (ΔG°) can be calculated using the following expression:
ΔG° = ∑np × ΔG°f(products) - ∑nr × ΔG°f(reactants)
where,
ni are the moles of reactants and products
ΔG°f(i) are the standard Gibbs free energies of formation of reactants and products
ΔG° = 1 mol × ΔG°f(Hg₂²⁺) + 2 mol × ΔG°f(Cl⁻) - 1 mol × ΔG°f(Hg₂Cl₂)
ΔG° = 1 mol × 148.85 kJ/mol + 2 mol × (-182.43 kJ/mol) - 1 mol × (-317.63 kJ/mol)
ΔG° = -533.64 kJ
Na only because cation is a positive ion whole cl is a negative ion in anion
The correct matches are as follows:
<span>1.instantaneous combustion
</span>G.burning<span>
2.mass of substances before and after a reaction is the same
</span>C.Law of Conservation of Matter<span>
3.substances that combine
</span>A.reactants
<span>
4. Yields or makes
</span>B.arrow symbol
<span>
5.rapid oxidation
</span>F.explosion<span>
6.new substance
</span>D.product
<span>
7.slow oxidation
</span>E.rust
<span>
Hope this answers the question. Have a nice day.
</span>
Don't smoke, drive less, don't let toast burn, use an electrical fire instead of a wood one....
I can't think of anything else.
Answer:
In the conservation of mass, mass (which is the same as energy) can never be created or destroyed in the same way oil is formed from the remains of small animals and plants that died and fell to the bottom of the sea and their mass (energy) is conserved as oil.