Answer:

Explanation:
Hello,
In this case, for the given decomposition of phosphorous pentachloride:

As the equilibrium constant is
and the initial concentration of phosphorous pentachloride is:
![[PCl_5]_0=\frac{1.0gPCl_5*\frac{1molPCl_5}{208.24gPCl_5} }{250mL*\frac{1L}{1000mL} } =0.019M](https://tex.z-dn.net/?f=%5BPCl_5%5D_0%3D%5Cfrac%7B1.0gPCl_5%2A%5Cfrac%7B1molPCl_5%7D%7B208.24gPCl_5%7D%20%7D%7B250mL%2A%5Cfrac%7B1L%7D%7B1000mL%7D%20%7D%20%3D0.019M)
Hence, by writing the law of mass action equation:
![Kc=\frac{[PCl_3][Cl_2]}{[PCl_5]}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5BPCl_5%5D%7D)
We must introduce the change
occurring due to the reaction extent and the concentrations at equilibrium (ICE table methodology):
![Kc=\frac{(x)(x)}{[PCl_5]_0-x}=\frac{x^2}{0.019-x}=1.1x10^{-2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%28x%29%28x%29%7D%7B%5BPCl_5%5D_0-x%7D%3D%5Cfrac%7Bx%5E2%7D%7B0.019-x%7D%3D1.1x10%5E%7B-2%7D)
Thus, solving for
we obtain:

In such a way, the equilibrium concentration of phosphorous pentachloride results:
![[PCl_5]_{eq}=[PCl_5]_0-x=0.019M-0.01M\\](https://tex.z-dn.net/?f=%5BPCl_5%5D_%7Beq%7D%3D%5BPCl_5%5D_0-x%3D0.019M-0.01M%5C%5C)
![[PCl_5]_{eq}=0.009M](https://tex.z-dn.net/?f=%5BPCl_5%5D_%7Beq%7D%3D0.009M)
Finally, the percent decomposition is computed by:
![\% Decomposition=\frac{[PCl_5]_0}{[PCl_5]_{eq}}*100\%=\frac{0.009M}{0.019M} *100\%\\\\\% Decomposition=47.4\%](https://tex.z-dn.net/?f=%5C%25%20Decomposition%3D%5Cfrac%7B%5BPCl_5%5D_0%7D%7B%5BPCl_5%5D_%7Beq%7D%7D%2A100%5C%25%3D%5Cfrac%7B0.009M%7D%7B0.019M%7D%20%2A100%5C%25%5C%5C%5C%5C%5C%25%20Decomposition%3D47.4%5C%25)
Best regards.