Since the slowest instruction in the SCA executes in 12.5 ns, the maximum system clock frequency is 80 MHz
To answer the question, we need to know what frequency is.
<h3>What is frequency?</h3>
Frequency is the number of oscillations per second of a wave.
It is given by f = 1/T where T = period of wave
Now, given that the slowest instruction in the SCA executes in t = 12.5 ns, we need to calculate maximum system clock frequency, f.
<h3>What is the maximum system clock frequency?</h3>
So, f = 1/t
= 1/12.5 ns
= 1/(12.5 × 10⁻⁹ s)
= 1/12.5 × 10⁹ Hz
= 0.08 × 10⁹ Hz
= 80 × 10⁻³ × 10⁹ Hz
= 80 × 10⁶ Hz
= 80 MHz
So, the maximum system clock frequency is 80 MHz
Learn more about maximum system clock frequency here:
brainly.com/question/14636488
#SPJ11
Correct Answers is A.
The machines gives us some mechanical advantage. This means the mechanical average makes the work output greater than the work input
Simple most example is a lever. The force applied is smaller and the output work is larger as compared to input.
Option B cannot be true, as there must be a force to get some work done.
Option C and D are inverse of what a machine is designed for. A small force can be exerted through a large distance to have a large force exerted through a small distance. Common Example of this principle is a screw opener.
Meaning of life ....
condition that distinguishes animals and plants from inorganic matter, including the capacity for growth, reproduction, functional activity, and continual change preceding death.
Answer:
975 m/s^2
Explanation:
The formula for rate of acceleration is
(Final velocity - intial velocity)/ time taken
If you plug in your data you will get 975 m/s^2
(1600 m/s -1210 m/s )/.4 s = 975 m^2