Answer:
The kinetic energy of the car is 
Explanation:
Given Information:
Voltage of circuit A = Va = 208 Volts
Current of circuit A = Ia = 40 Amps
Voltage of circuit B = Vb = 120 Volts
Current of circuit B = Ib = 20 Amps
Required Information:
Ratio of power = Pa/Pb = ?
Answer:
Ratio of power = Pa/Pb = 52/15
Explanation:
Power can be calculated using Ohm's law
P = VI
Where V is the voltage and I is the current flowing in the circuit.
The power delivered by circuit A is
Pa = Va*Ia
Pa = 208*40
Pa = 8320 Watts
The power delivered by circuit B is
Pb = Vb*Ib
Pb = 120*20
Pb = 2400 Watts
Therefore, the ratio of the maximum power delivered by circuit A to that delivered by circuit B is
Pa/Pb = 8320/2400
Pa/Pb = 52/15
Answer:
a) m = 993 g
b) E = 6.50 × 10¹⁴ J
Explanation:
atomic mass of hydrogen = 1.00794
4 hydrogen atom will make a helium atom = 4 × 1.00794 = 4.03176
we know atomic mass of helium = 4.002602
difference in the atomic mass of helium = 4.03176-4.002602 = 0.029158
fraction of mass lost =
= 0.00723
loss of mass for 1000 g = 1000 × 0.00723 = 7.23
a) mass of helium produced = 1000-7.23 = 993 g (approx.)
b) energy released in the process
E = m c²
E = 0.00723 × (3× 10⁸)²
E = 6.50 × 10¹⁴ J
Answer:
0.37sec
Explanation:
Period of oscillation of a simple pendulum of length L is:
T
=
2
π
×
√
(L
/g)
L=length of string 0.54m
g=acceleration due to gravity
T-period
T = 2 x 3.14 x √[0.54/9.8]
T = 1.47sec
An oscillating pendulum, or anything else in nature that involves "simple harmonic" (sinusoidal) motion, spends 1/4 of its period going from zero speed to maximum speed, and another 1/4 going from maximum speed to zero speed again, etc. After four quarter-periods it is back where it started.
The ball will first have V(max) at T/4,
=>V(max) = 1.47/4 = 0.37 sec