Answer:
Based on the passage, the article's claim is not true. Therefore, the answer is:
No, because radio waves have energies that are too low to fall in the ionizing range.
Explanation:
Radio waves are generally known as forms of non-ionizing radiation. This means that they do not have enough energy, unlike microwaves, to separate electrons from atoms or molecules, thereby ionizing them. They cannot cause electron displacement, as claimed in the article. Therefore, they cannot break chemical bonds, which can cause chemical reactions or DNA damage. As non-ionizing radiation, radio waves occur at lower frequencies in the electromagnetic spectrum.
(4) a metal sphere with a charge of 1.0 × 10^−9 C <span>moved through a potential difference of 4.0 V would undergo the greatest change in electrical energy from the list. </span>
<span>First law of thermodynamics. This conservation law states that energy cannot be created or destroyed but can be changed from one form to another. In essence, energy is always conserved but can be converted from one form into another. Like when an engine burns fuel, it converts the energy stored in the fuel's chemical bonds into useful mechanical energy and then into heat, or more specifically, the melting ice cubes. Yeast breaks down maltose into glucose to produce alcohol and Co2 in the fermentation process. This is a prime example of the 1st law of thermodynamics. No form of usable energy is really lost; it only changes from one form to another</span>
The acceleration would be 6m/sThis is because of the formula, "f/m=a" to find the acceleration; We would need to subtract the force of the friction which equals 1380, then divide that by the mass (which was 230) to get the answer 6