Answer:
Correct answer: t = 2.86 seconds
Explanation:
We first use this formula
V² - V₀² = 2 a d
where V is the final velocity (speed), V₀ the initial velocity (speed),
a the acceleration and d the distance.
We will calculate the acceleration from this formula
a = (V² - V₀²) / (2 d) = (2.5² - 1²) / (2 · 5) = (6.25 - 1) / 10 = 5.25 / 10
a = 0.525 m/s²
then we use this formula
V = V₀ + a t => t = (V - V₀) / a = (2.5 - 1) / 0.525 = 1.5 / 0.525 = 2.86 seconds
t = 2.86 seconds
God is with you!!!
A. The cliff was 30.7 m high
B. I also got 9.5 as the horizontal distance
Here is my work, I find making charts like this one to find knowns and unknowns can be helpful
Answer:
5295.3 N
Explanation:
According to law of momentum conservation, the change in momentum of the ball shall be from the momentum generated by the batter force
mv + P = mV
P = mV - mv = m(V - v)
Since the velocity of the ball before and after is in opposite direction, one of them is negative
P = 0.14(44.8 - (-19.5)) = 9 kg m/s
Hence the force exerted to generate such momentum within 1.7ms (0.0017s) is
F = P/t = 9/0.0017 = 5295.3 N
Hookes law state that provided that the elastic limit is not exceeded, the extension is directly proportional to the force
The process by which the heat energy is transmitted between the atoms or molecules is known as conduction.
Explanation:
Conduction is the transfer of heat through the material that are caused by temperature gradient with the material ends in heat flux. The heat transfer done by movement and mixing of a fluid is known as convection.
If a fluid is taken and it is kept as stationary. If there is a temperature gradient across that fluid, there would be transfer of heat that occurs in the fluid. It is negligible when compared to convective heat transfer.
Because of the heat transfer from solid to solid, density of liquid changes and start to move in upward direction due to low density. This type of motion is known as convection currents.