Answer: 3.48g
Explanation:
here, we will be using conservation of momentum to solve the problem. i.e the total momentum remains unchanged, unless an external force acts on the system. We'll in thus question, there is no external force acting in the system.
Remember, momentum = mass * velocity, then
mass of blood * velocity of blood = combined mass of subject and pallet * velocity of subject and pallet
Velocity of blood = 56.5cm = 0.565m
mass of blood * 0.565 = 54kg * (0.000063/0.160)
mass of blood * 0.565 = 54 * 0.00039375
mass of blood * 0.565 = 0.001969
mass of blood = 0.00348kg
Thus, the mass of blood that leaves the heart is 3.48g
I only know about the Water tank which is the most accurate. You place your body in it, and weights are added I think. Somehow some measurements are gathered to get your body fat weight. Online calculators exist, as well as electronic waves that are sent int your body, the echo is recorded and analyzed.
Answer:
Then the cell won't be able to function properly. With no nucleus the cell will lose control. It won't know what to do and there will be no cell division.
Explanation:
It’s gonna be Oxygen ....
The energy absorbed by photon is 1.24 eV.
This is the perfect answer.