Answer:
Average net force, F = 15157.15 N
Explanation:
It is given that,
The mass of the car and riders is, 
Initial speed of the car, u = 0
Final speed of the car, v = 43.4 m/s
Time, t = 8.59 seconds
We need to find the average net force exerted on the car and riders by the magnets. It can be calculated using second law of motion as :
F = m a


F = 15157.15 N
So, the average net force exerted on the car and riders by the magnets. Hence, this is the required solution.
Option (B) is correct.Energy contained in one gram of matter=9 x 10¹³ J
Explanation:
mass= 1 g= 0.001 kg
c= velocity of light= 3 x 10⁸ m/s
The mass energy equivalence equation is given by
E = m C²
E= (0.001)(3 x 10⁸)²
E=9 x 10¹³ J
Thus energy contained in one gram of matter=9 x 10¹³ J
Answer:
the direction of the particle is anti clockwise.
Explanation:
We know that;
- It's a positive particle
- That it's moving in a circle in a magnetic field
- We know the direction of the magnetic field
We can deduce the direction of the magnetic force because it is moving in a circle.
So the force is pointing to the centre of the circle and that's what is keeping it in that circular motion.
Since we know the direction of the magnetic field and force, we can use right hand rule to figure out the direction of the particle since the particle is positive.
Using right hand rule, the thumb which is the particle is pointing anticlockwise. So the direction of the particle is anti clockwise.
Answer:
a. The speed is 2.39 m/s
b. The acceleration of the block is 10.2
Explanation:
First, we have to do the energy balance where we consider two states, the first where the spring remains still and the second when it is stretched 0.400m:
Δx=
W_{ext}=20.4 Nm

To determine, the acceleration we solve the following equation for a:
