Potential energy is measured using formula Ep=mgh
m=mass (kg)
g= acceleration due to gravity (which is 9.8 on earth)
h= height in metres above ground
For this question
m=0.1
g=9.8
h=1
So Ep=0.1(9.8)(1)
Ep=0.98 Joules
When it is dropped all of this potential energy is converted into kinetic energy which can be measured using formula
Ek=1/2m(v^2) (v=final velocity)
Since all potential energy in this q is converted to kinetic we know Ek=0.98Joules and our mass is the same (0.1kg)
So when we sub everything in we get
0.98=1/2(0.1)(v^2)
0.98=0.05(v^2)||divide both side by 0.05
19.6=v^2 ||square root both sides
v=4.4 m/s
Answer:
It is frequently stated that the value of the acceleration due to gravity at the pole is larger than at the equator because the poles are closer to the center of the earth due to the earth's oblateness. ... The measured value is larger because the earth's density is not uniform but increases toward the center.