Answer:
10 atm.
Explanation:
Using the combined gas law equation as follows;
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question,
P1 = 5 atm
P2 = ?
V1 = 4L
V2 = 2L
T1 = 25°C = 25 + 273 = 298K
T2 = 25°C = 298K
Using P1V1/T1 = P2V2/T2
5 × 4/298 = P2 × 2/298
20/298 = 2P2/298
Cross multiply
298 × 20 = 298 × 2P2
5960 = 596P2
P2 = 5960 ÷ 596
P2 = 10 atm.
Answer:
false
Explanation:
Only ionic compounds can dissolate in water.
Sodium is an earth-metal (group one), sliver and platinum are d-block metals.... Thus silicon is the metalloid and that is true because it looks like a metal being shiny blue-gray but it exhibit non-metal characteristics, except the fact that it can conduct electricity in a heated state.
Answer:
Balanced
Explanation:
Please help me by marking me brainliest. I'm one away :)
d. Fe(s) and Al(s)
<h3>Further explanation</h3>
In the redox reaction, it is also known
Reducing agents are substances that experience oxidation
Oxidizing agents are substances that experience reduction
The metal activity series is expressed in voltaic series
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The more to the left, the metal is more reactive (easily release electrons) and the stronger reducing agent
The more to the right, the metal is less reactive (harder to release electrons) and the stronger oxidizing agent
So that the metal located on the left can push the metal on the right in the redox reaction
The electrodes which are easier to reduce than hydrogen (H), have E cells = +
The electrodes which are easier to oxidize than hydrogen have a sign E cell = -
So the above metals or metal ions will reduce Pb²⁺ (aq) will be located to the left of the Pb in the voltaic series or which have a more negative E cell value (greater reduction power)
The metal : d. Fe(s) and Al(s)