Answer:
A. 100 g of this solution contains 39 g of phosphoric acid
Explanation:
The formular for percentage by a mass id usually given as;
( Mass of element / Mass of compound ) * 100%
So when a solution contains 39% by mass of phosphoric acid, it means that in 100 units of the solution, there are 39 units of phosphoric acid.
The only option that satisfies this is option A. 100 g of this solution contains 39 g of phosphoric acid
Answer:
11.61 is the pH of 10.0 mL of a solution containing 3.96 g of sodium stearate.
Explanation:
Concentration of sodium stearate acid : c
Moles of sodium stearate = 
Volume of the solution = 10.0 mL = 0.010 L

![[C_{17}H_{35}COO^-]=c=1.294 M](https://tex.z-dn.net/?f=%5BC_%7B17%7DH_%7B35%7DCOO%5E-%5D%3Dc%3D1.294%20M)

initially c
c 0 0
At equilibrium
(c-x) x x
Dissociation constant of an acid = 
Expression of a dissociation constant of an acid is given by:

Solving for x;
x = 0.0041 M
![[OH^-]=0.0041 M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.0041%20M)
The pOH of the solution:
![pOH=-\log[OH^-]=-\log[0.0041 M]=2.39](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D%3D-%5Clog%5B0.0041%20M%5D%3D2.39)
pH = 14 -pOH
pH = 14 - 2.39 = 11.61
11.61 is the pH of 10.0 mL of a solution containing 3.96 g of sodium stearate.
Answer:
The zebra mussel is a small freshwater mussel.
Answer:
C. transition elements
Explanation:
Transition elements are groups of metallic elements that have partially filled d orbitals. They occupy the d-block of the periodic table (Group 3-12). Examples of elements that fall under this category are Nickel (Ni), Cobalt (Co), Copper (Cu), Zinc (Zn) etc. Transition metals have outstanding properties that distinguishes them from other elements.
One of these properties is their ability to form colored compounds due to their unfilled d electron shells. They form ions that are usually colored in solid compounds and in solution.
Upload the answer again please like the question