Answer:
3,29L
Explanation:
3.29L = V2
Formula: V1/T1 = V2/T2
--------------------
Given:
V1 = 3.0 L V2 = ?
T1 = 310 K T2 = 340 K
--------------------
Plugin:
(X stands in place of V2 just to make it easier to look at)
[3.0L / 310K = X / 340K]
(3.0L / 310K = 0.01L/K)
0.01L/K = X / 340K
(multiply 340K on both sides, it cancels out on the right)
0.01L/K * 340K = X
(0.01L/K * 340K = 3.29L)
**3.29L = X**
[or]
**3.29L = V2**
<span>Answer
is: activation energy of this reaction is 212,01975 kJ/mol.
Arrhenius equation: ln(k</span>₁/k₂) = Ea/R (1/T₂ - 1/T₁<span>).
k</span>₁<span> = 0,000643
1/s.
k</span>₂ = 0,00828
1/s.
T₁ = 622 K.
T₂ = 666 K.
R = 8,3145 J/Kmol.
1/T₁<span> = 1/622 K = 0,0016 1/K.
1/T</span>₂<span> = 1/666 K =
0,0015 1/K.
ln(0,000643/0,00828) = Ea/8,3145 J/Kmol · (-0,0001 1/K).
-2,55 = Ea/8,3145 J/Kmol · (-0,0001 1/K).
Ea = 212019,75 J/mol = 212,01975 kJ/mol.</span>
First, we will need to find the density of the object, take the mass and divide it by the dispplaced water:
128/424 = 0.302 grams/milliliters
Convert that to kg/m3
We get: 302kg/m3
Divide that to the density of water: 1000kg/m3
302/1000 = 0.302
(thats a pretty darn light weighted metal)
<span>Molecular compounds, which are represented by molecules, are usually made of non-metals only (or of metalloids and non-metals). Ionic compounds, which are represented by formula units, are made of metals and non-metals.
More detail if you're interested: Molecules and formula units are the representative particles for molecular and ionic compounds, respectively. By that I mean, one unit of a molecular compound is a molecule...a bundle of atoms covalently bonded that exists separately from all the other molecules. One unit of an ionic compound is a formula unit. A formula unit is a representation of the compound's formula. For example, the formula unit of NaCl is one Na^+1 ion and one Cl^-1 ion. The formula unit of AlCl3 is one Al^+3 ion and three Cl^-1 ions. Ionic compounds don't have separate bundles of atoms like molecular compounds do, so the formula unit is just the smallest number of ions that it takes to represent the formula. </span>