The law of conservation of mass<span> states that </span>mass<span> in an isolated system is neither created nor destroyed by chemical reactions or physical transformations.
</span>
Answer:
The pOH of HNO₃ solution that ha OH⁻ concentration 9.50 ×10⁻⁹M is 8.
Explanation:
Given data:
[OH⁻] = 9.50 ×10⁻⁹M
pOH = ?
Solution:
pOH = -log[OH⁻]
Now we will put the value of OH⁻ concentration.
pOH = -log[9.50 ×10⁻⁹M]
pOH = 8
Thus the pOH of HNO₃ solution that ha OH⁻ concentration 9.50 ×10⁻⁹M is 8.
Answer:
We need 10.14 grams of sodium bromide to make a 0.730 M solution
Explanation:
Step 1: Data given
Molarity of the sodium bromide (NaBr) = 0.730 M
Volume of the sodium bromide solution = 135 mL = 0.135 L
Molar mass sodium bromide (NaBr) = 102.89 g/mol
Step 2: Calculate moles NaBr
Moles NaBr = Molarity NaBr * volume NaBr
Moles NaBr = 0.730 M * 0.135 L
Moles NaBr = 0.09855 moles
Step 3: Calculate mass of NaBr
Mass NaBr = 0.09855 moles * 102.89 g/mol
Mass NaBr = 10.14 grams
We need 10.14 grams of sodium bromide to make a 0.730 M solution
The overall balanced
chemical reaction for this is:
Detonation of
Nirtoglycerin <span>
4 C3H5N3O9 --> 12 CO2 + 6 N2 + O2 + 10 H2O </span>
Therefore:
2.00 mL x 1.592 g/mL =
3.184 g <span>
3.184 g / 227.1 /mol = 0.0140 mol nitroglycerin
4 moles --> 12 + 6 + 1 + 10 = 29 moles of gas
<span>0.0140 mol x (29/4) = 0.1017 moles of gases or (0.102 mol) </span></span>