Any smooth curve connecting two points is called an arc. The length of the arc m∠QPR is 2.8334π m.
<h3>What is the Length of an Arc?</h3>
Any smooth curve connecting two points is called an arc. The arc length is the measurement of how long an arc is. The length of an arc is given by the formula,

where
θ is the angle, that which arc creates at the centre of the circle in degree.
Given the radius of the circle is 3m, while the angle made by the arc at the centre of the circle is 170°. Therefore,
The length of an arc = 2πr×(θ/360°) = 2π × 3 ×(170/360°) = 2.8334π m
Hence, the length of the arc m∠QPR is 2.8334π m.
Learn more about Length of an Arc:
brainly.com/question/1577784
#SPJ1
I think the answer will be 17 square that what my friend said.
Step-by-step explanation:
With reference to the regular hexagon, from the image above we can see that it is formed by six triangles whose sides are two circle's radii and the hexagon's side. The angle of each of these triangles' vertex that is in the circle center is equal to 360∘6=60∘ and so must be the two other angles formed with the triangle's base to each one of the radii: so these triangles are equilateral.
The apothem divides equally each one of the equilateral triangles in two right triangles whose sides are circle's radius, apothem and half of the hexagon's side. Since the apothem forms a right angle with the hexagon's side and since the hexagon's side forms 60∘ with a circle's radius with an endpoint in common with the hexagon's side, we can determine the side in this fashion:
tan60∘=opposed cathetusadjacent cathetus => √3=Apothemside2 => side=(2√3)Apothem
As already mentioned the area of the regular hexagon is formed by the area of 6 equilateral triangles (for each of these triangle's the base is a hexagon's side and the apothem functions as height) or:
Shexagon=6⋅S△=6(base)(height)2=3(2√3)Apothem⋅Apothem=(6√3)(Apothem)2
=> Shexagon=6×62√3=216
Answer:
Two boxes will cost
The cost of one tile is approximately 
Step-by-step explanation:
Note that 1 ft = 12 in, then

The area of the floor is

Now

then
144 sq. in - 1 tile,
9540 sq. in - x tiles.
Mathematically,

tiles is needed to cover the floor (67 full tiles).
Each box of tiles contains 45 tiles, so Cristina has to buy 2 boxes. These two boxes will cost
The cost of one tile is approximately 