Answer:
If A(t) represents the amount of salt in the tank at time t, the correct differential equation for A is is dA/dt = 15 - 0.005A
Option C) dA/dt = 15 - 0.005A is the correction Answer
Step-by-step explanation:
Given the data in the question;
If A(t) represents the amount of salt in the tank at time t, the correct differential equation for A is?
dA/dt = rate in - rate out
first we determine the rate in and rate out;
rate in = 3pound/gallon × 5gallons/min = 15 pound/min
rate out = A pounds/1000gallons × 5gallons/min = 5Ag/1000pounds/min
= 0.005A pounds/min
so we substitute
dA/dt = rate in - rate out
dA/dt = 15 - 0.005A
Therefore, If A(t) represents the amount of salt in the tank at time t, the correct differential equation for A is is dA/dt = 15 - 0.005A
Option C) dA/dt = 15 - 0.005A is the correction Answer
Answer:
Im really sprry i do not know tgis but good luck!!
Answer:
BM: <u>y = (2/3) x + 16/3</u> with segment length of 2.77
Step-by-step explanation:
AC formula: m = (6-0)/(0-4) = -3/2
(y-0)/(x-4) = -3/2 y = (-3/2)x + 6 ... (1)
BM slope: BM⊥ AC m = 2/3
BM formula: (y-4) / (x- -2) = (y-4) / (x+2) = 2/3
y-4 = 2/3 x + 4/3
<u>y = (2/3) x + 16/3</u> ... (2) -2≤x≤0.31
intercept of AC and BM (M) from (1) and (2): (-3/2)x + 6 = (2/3) x + 16/3
(13/6) x = 2/3 x = (2/3) / (13/6) = 4/13 ≈ 0.31
y = (2/3) (4/13) + (16/3) = (8/39) + (208/39) = 216/39 = 72/13 ≈ 5.54
M (4/13 , 72/13) or (0.31 , 5.54)
segment BM = √(4/13 - -2)² + (72/13 - 4)² = √1300/169 = 2.77
Answer:
B
Step-by-step explanation:
Let the given complex number
z = x + ix = 
We have to find the standard form of complex number.
Solution:
∴ x + iy = 
Rationalising numerator part of complex number, we get
x + iy = 
⇒ x + iy = 
Using the algebraic identity:
(a + b)(a - b) =
- 
⇒ x + iy = 
⇒ x + iy =
[ ∵
]
⇒ x + iy =
⇒ x + iy =
⇒ x + iy =
⇒ x + iy = 1 - i
Thus, the given complex number in standard form as "1 - i".