-reflection and refraction of light
-dispersion of light
-absorption of light
-polarization of light
We can apply the law of conservation of energy here. The total energy of the proton must remain constant, so the sum of the variation of electric potential energy and of kinetic energy of the proton must be zero:

which means

The variation of electric potential energy is equal to the product between the charge of the proton (q=1eV) and the potential difference (

):

Therefore, the kinetic energy gained by the proton is

<span>And since the initial kinetic energy of the proton was zero (it started from rest), then this 1000 eV corresponds to the final kinetic energy of the proton.</span>
Except when necessary for takeoff and landing, <span>the minimum safe altitude required for a pilot to operate an aircraft over other than congested area is an altitude of 1000 ft above the highest obstacle within a 2000 ft horizontal radius of the aircraft.
It is also good to know that apart from taking off and landing, the aircraft must not operate at a distance less than 500 ft from any person, vessel, structure or vehicle.</span>
Answer:
<h2>7.21 J</h2>
Explanation:
The work done by an object can be found by using the formula
workdone = force × distance
From the question we have
workdone = 2.060 × 3.5
We have the final answer as
<h3>7.21 J</h3>
Hope this helps you
Answer:
W = 157.5kJ
Explanation:
Assuming it moves the container at constant speed, the work done by the crane will be equal to the variation of the potential gratitational energy on the container:
where h2= -8m and h1=0m
Wc = 157.5kJ