Answer:
a) W = 46.8 J and b) v = 3.84 m/s
Explanation:
The energy work theorem states that the work done on the system is equal to the variation of the kinetic energy
W = ΔK =
-K₀
a) work is the scalar product of force by distance
W = F . d
Bold indicates vectors. In this case the dog applies a force in the direction of the displacement, so the angle between the force and the displacement is zero, therefore, the scalar product is reduced to the ordinary product.
W = F d cos θ
W = 39.0 1.20 cos 0
W = 46.8 J
b) zero initial kinetic language because the package is stopped
W -
=
-K₀
W - fr d= ½ m v² - 0
W - μ N d = ½ m v
on the horizontal surface using Newton's second law
N-W = 0
N = W = mg
W - μ mg d = ½ m v
v² = (W -μ mg d) 2/m
v = √(W -μ mg d) 2/m
v = √[(46.8 - 0.30 4.30 9.8 1.20) 2/4.3
]
v = √(31.63 2/4.3)
v = 3.84 m/s
Explanation:
F = MA
200 = 100 * A
A = 200/100
A = 2m/sec^2
<h3><em>hope </em><em>it </em><em>helps </em><em>you </em></h3>
Answer:
Hello your question is incomplete below is the complete question
Calculate Earths velocity of approach toward the sun when earth in its orbit is at an extremum of the latus rectum through the sun, Take the eccentricity of Earth's orbit to be 1/60 and its Semimajor axis to be 93,000,000
answer : V = 1.624* 10^-5 m/s
Explanation:
First we have to calculate the value of a
a = 93 * 10^6 mile/m * 1609.344 m
= 149.668 * 10^8 m
next we will express the distance between the earth and the sun
--------- (1)
a = 149.668 * 10^8
E (eccentricity ) = ( 1/60 )^2
= 90°
input the given values into equation 1 above
r = 149.626 * 10^9 m
next calculate the Earths velocity of approach towards the sun using this equation
------ (2)
Note :
Rc = 149.626 * 10^9 m
equation 2 becomes
(
therefore : V = 1.624* 10^-5 m/s
Answer:
Acceleration will increase.
Explanation:
The relation between force, mass and acceleration according to the Newton's second law of motion is given as:
F = ma
We are given that the driving force on the truck remains constant, so F is constant here. We can rewrite the above equation as:

Since, F is constant, the acceleration of the truck is inversely proportional to the mass.
There is a hole at the bottom of the truck through which the sand is being lost at a constant rate. Since, the sand is being lost, the overall mass of the truck is being reduced.
Since, the acceleration of the truck is inversely proportional to the mass, the reduced mass will result in an increased acceleration.
So, the acceleration of the truck will increase.