Answer:
The horizontal component of the velocity is 188 m/s
The vertical component of the velocity is 50 m/s.
Explanation:
Hi there!
Please, see the figure for a graphic description of the problem. Notice that the x-component of the vector velocity (vx), the y-component (vy) and the vector velocity form a right triangle. Then, we can use trigonometry to obtain the magnitude of vx and vy:
We can find vx using the following trigonometric rule of a right triangle:
cos α = adjacent / hypotenuse
cos 15° = vx / 195 m/s
195 m/s · cos 15° = vx
vx = 188 m/s
The horizontal component of the velocity is 188 m/s
To calculate the y-component we will use the following trigonometric rule:
sin α = opposite / hypotenuse
sin 15° = vy / 195 m/s
195 m/s · sin 15° = vy
vy = 50 m/s
The vertical component of the velocity is 50 m/s.
Answer:
<em>Its speed will be 280 m/s</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the speed of an object changes by an equal amount in every equal period of time.
If a is the constant acceleration, vo the initial speed, vf the final speed, and t the time, vf can be calculated as:

The object accelerates from rest (vo=0) at a constant acceleration of
. The final speed at t=35 seconds is:


Its speed will be 280 m/s
Answer:
1.
Firstly removing off one strip and it leaves electrons behind, so the strip becomes positively charged.
2. The roll however is not negatively charged because it is "earthed " by the hand holding it, thus excess negatives repel each other away through the hand.
3.Tearing off the next strip and once more it leaves electrons behind, the new strip is also positively charged and will repel the first strip.
4. Then, tear two strips apart and one will leave electrons behind on the other. Meaning that one strip is positive and the other is negative and they will attract each other.
The answer is true because A current carrying wire is surrounded by magnetic field