Answer:
Explanation: The strengths of the inter molecular forces varies as follows -

The normal boiling point of CSe2 is 125°C and that of CS2 is 116°C, which explains the trend that as we move down the group, the boiling point of e compound increases as the size increases.
This usually happens because larger and heavier atoms have a tendency to exhibit greater inter molecular strengths due to the increase in size . As the size increases, the valence shell electrons move far away from the nucleus, thus has a greater tendency to attract the temporary dipoles.
And larger the inter molecular forces, more tightly the electrons will be held to each other and thus more thermal energy would be required to break the bonds between them.
Using a calculator:
(2.568 x 5.8)/4.186 = 3.5581460…
= 3.56 (3sf)
You didn’t specify the correct number of significant figures needed.
The answer to 4 is A.
The answer to 5 is C.
Avogadro's number is the number of atoms in one mole of a substance. The number is 6.022 x 10^23 atoms/mol. So, if you have 1 mole of carbon atoms, there will be 6.022 x 10^23 atoms in that sample.
Hope this helps
When lithium reacts to chlorine it goes from having no charge to +1 charge, while chlorine goes from neutral to having -1 charge.