D. Potential is not moving, while kinetic is moving.
67.45 is the answer I think
Answer:
B
Explanation:
it's on the internet and I just know because I did this before too
People use data tables and graphs in many financial careers and when looking at the statistics for something as simple as what they saw on the news, etc. When scientists use them, they’re both using them to see the numbers and the facts. They’re both able to use graphs and data tables to help them. They are different though because scientists use them for science related things like how much a tree grew in a year while everyday people use them to see the average amount of drop outs per year or something along those lines.
Data tables and graphs are very vital to a scientists job. They help them easily collect and organize information to where anyone can read it. It may not be absolutely necessary, but it’s something every scientist uses.
Any scientist doing any sort of research would use them. Whether they’re a biologist, geologist or whatever, they all use graphs and data tables to help them organize their research.
I will present a simple reaction so we can do this conversion:
2H₂ + O₂ → 2H₂O
We will assume we have 32 g of O₂ and we want to find the amount of water, assuming this reaction goes to completion. We must first convert the initial mass to moles, which we do using the molar mass in units of g/mol. The molar mass of O₂ is 32 g/mol.
32 g O₂ ÷ 32 g/mol = 1 mole O₂.
Now that we have moles of oxygen, we use the molar coefficients to find the ratio of water molecules to oxygen molecules. We can see there are 2 moles of water for every 1 mole of oxygen.
1 moles O₂ x (2 mol H₂O/ 1 mol O₂) = 2 moles H₂O
Now that we have the moles of water, we can convert this amount into grams using the molar mass of water, which is 18 g/mol.
2 moles H₂O x 18 g/mol = 36 g H₂O
Now we have successfully converted the mass of one molecule to the mass of another.