Answer:
2.6 kilo Ohm
Explanation:
Capacitance, C = 591 μF = 591 x 10^-6 F
Vo = 88.5 V
V = 11.9 V
t = 3.09 s
Let the resistance is R.



Take natural log on oth the sides
ln 0.135 = - 3.09 / RC
RC = 1.545
R = 1.545 / ( 591 x 10^-6)
R = 2614.2 ohm
R = 2.6 kilo Ohm
Thus the resistance is 2.6 kilo Ohm.
Explanation:
What is IEEE 802.11?
IEEE 802.11 is a set of WLAN standards for communication developed by the Institute for Electrical and Electronics Engineers (IEEE) and is unarguably most widely used WLAN technology.
Features: IEEE 802.11a
- The operating frequency band is 5 GHz.
- The maximum theoretical data rate is 54 Mbps, the typical throughput is around 25 Mbps and minimum data rate is 6 Mbps.
- It can support 64 users per access point.
Features: IEEE 802.11b
- The operating frequency band is 2.4 GHz.
- The maximum theoretical data rate is 11 Mbps but typical throughput is around 6 Mbps and minimum data rate is 1 Mbps.
- It can support 32 users per access point.
Wireless Coverage IEEE 802.11a Vs IEEE 802.11b:
- Signal coverage is one of the most important factors among users.
- The transmission range of IEEE 802.11a is not greater than 100 ft in indoor setting whereas IEEE 802.11b has a superior performance in this regard with transmission range up to 150 ft in indoor setting.
- The data rate has a direct relation with the access point coverage area, a higher data rate means less coverage area and a lower data rate results in increased coverage.
So your parent hasn't joined you on the Brainly express to Achievement-ville. We'll get them on board. Parents are busy people, but you can be the boss and remind them. Remind them how Brainly boosts you with expert knowledge. Remind them that tons of students already get grade upgrades with Brainly Plus. Remind your parent of the power they have to raise you to your full potential. We think they would agree. You deserve every education advantage.
Answer:
Force of static friction between the two surfaces
Explanation:
When two surfaces come into contact, they exert a force that resist the sliding of the two surfaces. This force is called static friction.
This force is given by the relation

Where,
μ - coefficient of static friction
η - normal force acting on the body
When a force acts on a body placed on a rough surface, it doesn't do any work if the applied force was less than the force of static friction.
So, in order to move the body, the applied force should be greater than the force of static friction.