Answer:

Explanation:
= normal force acting on the coin
Normal force in the upward direction balances the weight of the coin, hence

= frequency of rotation
Angular velocity of turntable is hence given as

= distance from the axis of rotation
= minimum coefficient of static friction
static frictional force is given as

The static frictional force provides the necessary centripetal force , hence
Centripetal force = Static frictional force

I think you're saying that once you start pushing on the cars, you want to be able to stop each one in the same time.
This is sneaky. At first, I thought it must be both 'c' and 'd'. But it's not
kinetic energy, for reasons I'm not ambitious enough to go into.
(And besides, there's no great honor awarded around here for explaining
why any given choice is NOT the answer.)
The answer is momentum.
Momentum is (mass x speed). Change in momentum is (force x time).
No matter the weight (mass) or speed of the car, the one with the greater
momentum is always the one that will require the greater (force x time)
to stop it. If the time is the same for any car, then more momentum
will always require more force.
K=1400*V^2/2
K=20000*25^2/2. => 1400*V^2/2=20000*25^2/2 <=> 1400*V^2=20000*25^2
14*V^2=200*225
v^2=100*225/7
v=250/7^(1/2)
Answer: 250*7^(1/2)/7
Answer:
When substances made of iron are exposed to oxygen and moisture (water), rusting takes place. Rusting removes a layer of material from the surface and makes the substance weak. Rusting is a chemical change.