This problem can be readily solved if we are familiar with the point-slope form of straight lines:
y-y0=m(x-x0) ...................................(1)
where
m=slope of line
(x0,y0) is a point through which the line passes.
We know that the line passes through A(3,-6), B(1,2)
All options have a slope of -4, so that should not be a problem. In fact, if we check the slope=(yb-ya)/(xb-xa), we do find that the slope m=-4.
So we can check which line passes through which point:
a. y+6=-4(x-3)
Rearrange to the form of equation (1) above,
y-(-6)=-4(x-3) means that line passes through A(3,-6) => ok
b. y-1=-4(x-2) means line passes through (2,1), which is neither A nor B
****** this equation is not the line passing through A & B *****
c. y=-4x+6 subtract 2 from both sides (to make the y-coordinate 2)
y-2 = -4x+4, rearrange
y-2 = -4(x-1)
which means that it passes through B(1,2), so ok
d. y-2=-4(x-1)
this is the same as the previous equation, so it passes through B(1,2),
this equation is ok.
Answer: the equation y-1=-4(x-2) does NOT pass through both A and B.
B is the best strategy. (You mentioned an option D, but it's not shown in your question!!)
Answer:
The rate is
cups per hour
Step-by-step explanation:
It took the faucet 1 1/2 hours, i.e 1.5 or 3/2 hours to fill 1/4 cup by leaking
We need to find the rate in terms of cups that can be filled by water in 1 hour.
Using unitary method:
If it takes
h for
cup;
then it will take 1 h for how many cups?



cups
Therefore, the rate is
cups per hour
1) function f(x)
x - 5
f(x) = ----------------
3x^2 - 17x - 28
2) factor the denominator:
3x^2 - 17x - 28 = (3x + 4)(x - 7)
x - 5
=> f(x) = -----------------------
(3x + 4) (x - 7)
3) Find the limits when x → - 4/3 and when x → 7
Lim of f(x) when x → - 4/3 = +/- ∞
=> vertical assymptote x = - 4/3
Lim of f(x) when x → 7 = +/- ∞
=> vertical assymptote x = 7
Answer: there are assympotes at x = 7 and x = - 4/3
9514 1404 393
Answer:
0 ft
Step-by-step explanation:
The line hangs down 15 feet from the top of each pole, so the distance between them must be zero if the total line length is 30 feet.