I don't know if this is the answer you are looking for but it would be flat unless the player pushed the tuning slide in.
No, but. It will seperate into two different layers based on density
Answer:
74,67 gr/mol
Explanation:
At STP 1 mole of an ideal gas has volume of 22,4 L. Since we know the volume of the gas we can find the number of moles of the gas. (300 mL=0,3 L)
n=0,3L/22,4 L=0,01339 mol
Since we know weight of the gas as 1 g, we can find the molecular weight as;
MW=1 g/0,01339 mol =74,67 gr/mol
Answer: Option (e) is the correct answer.
Explanation:
Formula to calculate radius is as follows.
p(r) = 
= 
= 0
+
= 0

= 
r = 
Thus, we can conclude that most likely radius at which the electron would be found is
.
Answer:
See explanation
Explanation:
The first step in this reaction is a unimolecular reaction. It involves the formation of the carbocation. This is so because tertiary alkyl halides only undergo substitution by SN1 mechanism due to sterric crowding.
The second step in the reaction is bi molecular. In this step, the carbocation now combines with the OH^- to yield the alcohol.
Net equation of the reaction is;
(CH3)3CBr + OH^- -------> (CH3)3COH + Br^-
The intermediate here is the carbocation, (CH3)3C^+