Answer:
1.41 moles H2O2(with sig figs)
Explanation:
okay so what is the molar mass of H2O2= (1.008 g/mol)2+(16.00g/mol)2= (2.016+ 32.00) g/ mol
= 34. 02 g/mol
48.0g H2O2* 1 mol H2O2/ 34.02 g H2O2= 1.41 mol H2O2
The claim is that NaCl mixture is a homogeneous mixture.
Homogeneous mixture means that the components of the mixtures cannot be determined or separated by the naked eye. However, these components can be separated using physical means, such as boiling, evaporation and condensation which will be used in this experiment.
First, we need to prepare one molar solution of NaCl. To do so, we will dilute a mass of 58.44 grams (molar mass of NaCl) in 1 liter of water.
By this, we will have NaCl solution.
We can notice that once the NaCl is diluted in water, all what you can see is a clear solution. You cannot see the separate particles of NaCl in water.
..............> observation I
Now, we will heat this solution until it boils and water starts evaporating. We will place a cold surface above the steam coming out from the boiling solution.
What we will observe is that when all the water evaporates, we can see white precipitate of NaCl in the bottom of the container. Examining the cold surface placed above the steam, we can see that the water has condensed on this surface.
.........>observation II
Based on this, we managed to use boiling, evaporation and condensation (physical methods) to restore the components of the solution separately.
.............>conclusion
Based on observation I, observation II and the conclusion. we were able to prove that NaCl solution is a homogeneous mixture.
Answer:
40.79
Explanation:
an ounce is equal to approximately 28.3 grams.
if you have 4 ounces then it would be equal to about 113.4 grams. then you would divide that by 2.78 which will equal about 40.8
Answer:
chemical substances being held together by attraction of atoms to each other through sharing, as well as exchanging, of electrons -or electrostatic forces.
Explanation:
I hope this helps
A. Conducting a drug experiment which will harm lab rats