1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin2010 [14]
3 years ago
14

Javier has four cylindrical models. The heights, radii, and diagonals of the vertical cross-sections of the models are shown in

the table.
Model 1
radius: 14 cm
height: 48 cm
diagonal: 50 cm
Model 2
radius: 6 cm
height: 35 cm
diagonal: 37 cm
Model 3
radius: 20 cm
height: 40 cm
diagonal: 60 cm
Model 4
radius: 24 cm
height: 9 cm
diagonal: 30 cm



In which model does the lateral surface meet the base at a right angle?
a. Model 1
b. Model 2
c. Model 3
d. Model 4
Mathematics
2 answers:
Sever21 [200]3 years ago
8 0
Given the heights, radii, and diagonals of the vertical cross-sections of the models, the model in which the lateral surface meet the base at a right angle is the model in which the height, the diameter and the diagonal of the vertical cross-section forms a right triangle.

i.e. the sum of the squares of the height (h) and the diameter (d) gives the square of the diagonal vertical cross-section (l).

For model 1:

<span>radius: 14 cm, thus diameter = 2(14) = 28 cm
height: 48 cm
diagonal: 50 cm

</span>d^2+h^2=28^2+48^2 \\  \\ =784+2,304=3,090\neq50^2=l^2
<span>
Thus, the lateral surface of model 1 does not meets the base at right angle.

For model 2:

</span><span>radius: 6 cm, thus diameter = 2(6) = 12 cm
height: 35 cm
diagonal: 37 cm

[</span>tex]d^2+h^2=12^2+35^2 \\ \\ =144+1,225=1,369=37^2=l^2[/tex]

Thus, the lateral surface of model 2 meets the base at right angle.

For model 3:

<span>radius: 20 cm, thus, diameter = 2(20) = 40 cm
height: 40 cm
diagonal: 60 cm

</span>d^2+h^2=40^2+40^2 \\ \\ =1,600+1,600=3,200\neq60^2=l^2

Thus, the lateral surface of model 3 does not meets the base at right angle.

For model 4:

<span>radius: 24 cm, thus, diameter = 2(24) = 48 cm
height: 9 cm
diagonal: 30 cm

</span>d^2+h^2=48^2+9^2 \\ \\ =2,304+81=2,385\neq30^2=l^2

Thus, the lateral surface of model 3 does not meets the base at right angle.

Therefore, the <span>model in which the lateral surface meets the base at a right angle is model 2 (option b)</span>
Aleks [24]3 years ago
7 0

The Answer is in fact B or "Model 2"

You might be interested in
one table has 8 people with 3 pizzas another table has 10 people with 4 pizzas which table has more pizza?
Alika [10]

Answer:

The table with 10 people and 4 pizzas

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Help with this problem please !!!!!
Karolina [17]

Answer:

28

Step-by-step explanation:

Cross multiply

18k = 12 x 42

18 k = 504

   k = 504/18

   k = 28

3 0
3 years ago
Read 2 more answers
Three-quarters of the students that Maria surveyed stated that they liked to sleep in on Saturday morning. If 24 of the students
OLga [1]

Answer:

I think it’s C

Step-by-step explanation:

6 0
3 years ago
George finished 10 of 25 math problems.what percent of the problems did george finish
PIT_PIT [208]

Answer:

40%

Step-by-step explanation:

So 10/25=0.4

0.4=40%

8 0
3 years ago
Read 2 more answers
Given f(x)=x^2 and G(x)=x-1
matrenka [14]

9514 1404 393

Answer:

  g(f(7/3)) = 4 4/9

Step-by-step explanation:

  g(f(7/3)) = g((7/3)²) = g(49/9) = 49/9 -1 = 40/9

  g(f(7/3)) = 4 4/9

4 0
3 years ago
Other questions:
  • find the values of x between 0 and 2pi where the tangent line to the graph of y=sinxcosx is horizontal.
    10·1 answer
  • Simplify 6r · s · 4rt.
    12·2 answers
  • One ordered pair $(a,b)$ satisfies the two equations $ab^4 = 384$ and $a^2 b^5 = 4608$. What is the value of $a$ in this ordered
    6·1 answer
  • Lexi has 24 students in her class 2/3 of the students are girls.how many girls are in lexis class?
    10·1 answer
  • WILL GIVE BRAINLIEST. If 3x+5y=13 and 6x+7y=20, find the value of y/x
    15·2 answers
  • Given that sin 60 = root3/2<br> Find the exact value of sin 240
    5·1 answer
  • Tell me 3 points that would be on the graph of y = 2x + 3
    8·2 answers
  • 925÷25 show how you get it​
    10·2 answers
  • Can someone explain how I solve both of these? I’m sort of lost
    10·2 answers
  • Anyone know asap pls
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!