671mi/hr
= 671/60min (calculates miles/min)
= (671/60) ÷ 60seconds (calculates miles/sec)
((671/60) ÷ 60)× 1609m
= 299.899 meters/sec
= 299.90m (round off to 2 decimals )
Answer:
0.8c and -0.14c
Explanation:
The first fragment will have a speed of +0.5c respect of a frame of reference moving at +0.5c
Lest name v the velocity of the frame of reference, and u' the velocity of the object respect of this moving frame of reference.
The Lorentz transform for velocity is:
u = (u' + v) / (1 + (u' * v) / c^2)
u = (0.5c + 0.5c) / (1 + (0.5c * 0.5c) / c^2) = 0.8c
The other fragment has a velocity of u' = -0.6c respect of the moving frame of reference.
u = (-0.6v + 0.5c) / (1 + (0.5c * 0.5c) / c^2) = -0.14c
We are given a box that slides up a ramp. To determine the force of friction we will use the following relationship:

Where.

To determine the Normal force we will add the forces in the direction perpendicular to the ramp, we will call this direction the y-direction as shown in the following diagram:
In the diagram we have:

Adding the forces in the y-direction we get:

Since there is no movement in the y-direction the sum of forces must be equal to zero:

Now we solve for the normal force:

To determine the y-component of the weight we will use the trigonometric function cosine:

Now we multiply both sides by "mg":

Now we substitute this value in the expression for the normal force:

Now we substitute this in the expression for the friction force:

Now we substitute the given values:

Solving the operations:

Therefore, the force of friction is 15.01 Newtons.
Yes yes yes yes yes yes yes yes
Answer:
When a ray of light falls on a glass slab normally, the angle between normal and incident ray is zero.