Answer:
Explanation:
a) 1.00 - 0.12 = 0.88
m = 1200(0.88)^t
b) t = ln(m/1200) / ln(0.88)
c) m = 1200(0.88)^10 = 334.20 g
d) t = ln(10/1200) / ln(0.88) = 37.451... = 37 s
e) t = ln(1/1200) / ln(0.88) = 55.463... = 55 s
Answer: then you’re not sick d u h
Explanation:
Answer:
position as a function of time is y = 0.05 × cos(9.9)t
Explanation:
given data
mass = 5 kg
length = 10 cm = 0.1 m
displaced = 5 cm
to find out
position as a function of time
solution
we will apply here equilibrium that is
mass × g = k × length
put here value and find k
k = 
k = 490 N/m
and ω is
ω = 
ω = 
ω = 9.9
so here position w.r.t time is
y = 0.05 × cosωt
y = 0.05 × cos(9.9)t
so position as a function of time is y = 0.05 × cos(9.9)t
Answer:
The deceleration is 0.18 m/s²
Explanation:
Hi there!
Using Newton´s second law, we can calculate the deceleration:
∑F = m · a
Where:
∑F = the sum of all forces in a given direction.
m = mass of the object.
a = acceleration.
Solving for a:
∑F/m = a
The only force acting on the meteor is the applied force of 8.6 N. So, the acceleration will be:
8.6 N / 48.9 kg = a
a = 0.18 m/s²
The deceleration is 0.18 m/s² or, in other words, the acceleration is -0.18 m/s²
Have a nice day!