1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korolek [52]
3 years ago
5

A rock of mass 170 kg needs to be lifted off the ground. One end of a metal bar is slipped under the rock, and a fulcrum is set

up under the bar at a point that is 0.65 m from the rock. A worker pushes down (perpendicular) on the other end of the bar, which is 1.9 m away from the fulcrum. What force is required to move the rock?

Physics
1 answer:
frosja888 [35]3 years ago
5 0

Answer:

866.32 N

Explanation:

The diagram explains better.

Taking the total moment of forces, the sum of the clockwise moment of forces about the fulcrum must be equal to the sum of the anticlockwise moment of forces about the fulcrum:

F * (1.9 - 0.65) = 170 * 9.8 * 0.65

F * 1.25 = 1082.9

F = 1082.9/1.25

F = 866.32 N

A force of 866.32 N is needed to move the rock.

You might be interested in
Four different objects are placed on a number line at 0. The chart describes the motion of each object.
Ket [755]

Answer:

Z

Explanation:

8 0
3 years ago
explain the production of current with the help of a magnet and describe which device works on this phenomena
spin [16.1K]

Answer:

Explanation:

The properties of magnets are used to make electricity. Moving magnetic fields pull and push electrons. ... Moving a magnet around a coil of wire, or moving a coil of wire around a magnet, pushes the electrons in the wire and creates an electrical current.

4 0
2 years ago
A plane has a mass of 360,000 kg takes-off at a speed of 300 km/hr. i) What should be the minimum acceleration to take off if th
melomori [17]

Answer:

i) the minimum acceleration to take off is 22500 km/h²

ii) the required time needed by the plane from starting to takeoff is 0.0133 hrs

iii) required force that the engine must exert to attain acceleration is 625 kN

Explanation:

Given the data in the question;

mass of plane m = 360,000 kg

take of speed v = 300 km/hr = 83.33 m/s

i)

What should be the minimum acceleration to take off if the length of the runway is 2.00 km

from Newton's equation of motion;

v² = u² + 2as

we know that a plane starts from rest, so; u = 0

given that distance S = 2 km

we substitute

(300)² = 0² + ( 2 × a × 2 )

90000 = 4 × a

a = 90000 / 4

a = 22500 km/h²

Therefore,  the minimum acceleration to take off is 22500 km/h²

ii) At this acceleration, how much time would the plane need from starting to takeoff.

from Newton's equation of motion;

v = u + at

we substitute

300 = 0 + 22500 × t

t = 300 / 22500

t = 0.0133 hrs

Therefore, the required time needed by the plane from starting to takeoff is 0.0133 hrs

iii) What force must the engines exert to attain this acceleration

we know that;

F = ma

acceleration a = 22500 km/hr² = 1.736 m/s²

so we substitute

F = 360,000 kg × 1.736 m/s²

F =  624960 N

F = 625 kN

Therefore, required force that the engine must exert to attain acceleration is 625 kN

5 0
3 years ago
If the mass of a material is 87 grams and the volume of the material is 14 cm3, what would the density of the material be?
tresset_1 [31]

Answer:

6.214g/cm³

Explanation:

The question is on density of a material

Density=mass/volume

Given, mass=87grams   and volume= 14 cm³  density=?

Density=m/v 87/14 =6.214g/cm³

8 0
3 years ago
A specimen of steel has a rectangular cross section 20 mm wide and 40 mm thick, an elastic modulus of 207 GPa, and a Poisson’s r
katrin2010 [14]

Answer:

There's a decrease in width of 2.18 × 10^(-6) m

Explanation:

We are given;

Shear Modulus;E = 207 GPa = 207 × 10^(9) N/m²

Force;F = 60000 N.

Poisson’s ratio; υ =0.30

We are told width is 20 mm and thickness 40 mm.

Thus;

Area = 20 × 10^(-3) × 40 × 10^(-3)

Area = 8 × 10^(-4) m²

Now formula for shear modulus is;

E = σ/ε_z

Where σ is stress given by the formula Force(F)/Area(A)

While ε_z is longitudinal strain.

Thus;

E = (F/A)/ε_z

ε_z = (F/A)/E

ε_z = (60,000/(8 × 10^(-4)))/(207 × 10^(9))

ε_z = 3.62 × 10^(-4)

Now, formula for lateral strain is;

ε_x = - υ × ε_z

ε_x = -0.3 × 3.62 × 10^(-4)

ε_x = -1.09 × 10^(-4)

Now, change in width is given by;

Δw = w_o × ε_x

Where w_o is initial width = 20 × 10^(-3) m

So; Δw = 20 × 10^(-3) × -1.09 × 10^(-4)

Δw = -2.18 × 10^(-6) m

Negative means the width decreased.

So there's a decrease in width of 2.18 × 10^(-6) m

6 0
3 years ago
Other questions:
  • Th answer is "electric attraction is a force that can act at a distance."
    9·1 answer
  • A boy reaches out of a window and tosses a ball straight up with a speed of 10 m/s. The ball is 20 m above the ground as he rele
    9·1 answer
  • How many millimeter are there in 10 centimeters?
    15·2 answers
  • Differentiate between a cation and an anion.​
    15·1 answer
  • Electronic brainstorming, also called _____, is a technique used to help members of a group come together over a computer networ
    15·1 answer
  • Which of the following characteristics are displayed by hard magnetic materials?
    9·1 answer
  • The environment between the outer and inner nuclear membranes is most accurately referred to as the:
    11·1 answer
  • If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the
    10·1 answer
  • What is the geocentric angle of the earthquake focus?​
    14·1 answer
  • When an electron enters a region of uniform magnetic field (B=0.19T), with its
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!