Answer:
Newton's laws are very important because they tie into almost everything we see in everyday life. These laws tell us exactly how things move or sit still, like why you don't float out of bed or fall through the floor of your house.
Explanation: Newton's laws of motion are important because they are the foundation of classical mechanics, one of the main branches of physics. Mechanics is the study of how objects move or do not move when forces act upon them.
If you're looking for "what rocks are formed by changes..." it's Igneous Rocks.
Here, we use the mole as we would use any other collective number: a dozen eggs; a Bakers' dozen; a Botany Bay dozen.
Of course, the mole specifies a much larger quantity, and if I have a mole of stuff then I have
6.022
×
10
23
individual items of that stuff. We can also specify an equivalent mass, because we also know the mass of a mole of iron, and a mole of oxygen etc........The mole is thus the link between the macro world of grams and kilograms and litres, that which we can measure out in the lab, to the micro world of atoms, and molecules, that which we can perceive only indirectly.
Here we have the formula unit
F
e
2
(
S
O
4
)
3
. If there is a mole of formula units, there are necessarily 2 moles of iron atoms, 3 sulfate ions,.......etc.
Answer:
13.8 moles of water produced.
Explanation:
Given data:
Moles of KMnO₄ = 3.45 mol
Moles of water = ?
Solution:
Chemical equation:
16HCl + 2KMnO₄ → 2KCl + 2MnCl₂ + 5Cl₂ + 8H₂O
Moler ratio of water and KMnO₄:
KMnO₄ : H₂O
2 : 8
3.45 : 8/2×3.45 = 13.8 mol
Hence, 3.45 moles of KMnO₄ will produced 13.8 mol of water.
Answer:
Boron has a larger radius and the protons in carbon exert more pull.
Explanation:
Remember than elements have greater radius as they are closer to the bottom left corner, so boron would have the larger radius here. Carbon has a smaller radius, which makes it easier for the protons in carbon to exert more pull.