Answer:
The velocity of the arrow after 3 seconds is 30.02 m/s.
Explanation:
It is given that,
An arrow is shot upward on the moon with velocity of 35 m/s, its height after t seconds is given by the equation:

We know that the rate of change of displacement is equal to the velocity of an object.

Velocity of the arrow after 3 seconds will be :

So, the velocity of the arrow after 3 seconds is 30.02 m/s. Hence, this is the required solution.
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1
I think phosphorus has the highest density at room temp.
Answer:
A. the speed of a reaction
Explanation:
The thermodynamic aspect of a reaction will show you the energy needed for a reaction to occur. If the energy difference(ΔG) is positive, which means the reaction is absorbing energy and it called endothermically. The opposite will be an exothermic reaction that will release energy, which means it doesn't need energy and the energy difference (ΔG) will be negative.
Thermodynamic can be used to determine a few things of a reaction, like the direction of the reaction, the extent, or temperature in which the reaction is spontaneous. But thermodynamic not used to find the speed of a reaction.
For a concave mirror, the radius of curvature is twice the focal length of the mirror:

where f, for a concave mirror, is taken to be positive.
Re-arranging the formula we get:

and since the radius of curvature of the mirror in the problem is 24 cm, the focal length is