Answer:
1. the electric potential energy of the electron when it is at the midpoint is - 2.9 x
J
2. the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge is - 5.04 x
J
Explanation:
given information:
= 3 nC = 3 x
C
= 2 nC = 2 x
C
r = 50 cm = 0.5 m
the electric potential energy of the electron when it is at the midpoint
potential energy of the charge, F
F = k 
where
k = constant (8.99 x
)
electron charge,
= - 1.6 x
C
since it is measured at the midpoint,
r = 
= 0.25 m
thus,
F = 
= k
+ k
=
(
)
= (8.99 x
)( - 1.6 x
)(3 x
+2 x
)/0.25
= - 2.9 x
J
the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge
= 10 cm = 0.1 m
= 0.5 - 0.1 = 0.4 m
F = k
+ k
=
(
+
)
= (8.99 x
)( - 1.6 x
)(3 x
/0.1+2 x
/0.4)
= - 5.04 x
J
Answer:
3600 kg
Explanation:
From the question,
Density = Mass/Volume
D = M/V.............................. Equation 1
Where D = Density of the substance, M = mass of the substance, V = Volume of the subtance.
Make M the subject of the equation
M = D×V ............................ Equation 2
Given: D = 1200 kg/m³, V = 3 m³.
Substitute these values into equation 2
M = 1200×3
M = 3600 kg.
Hence the mass of the substance is 3600 kg
Answer:
+ 3.0 m
Explanation:
displacement is shortest distance from fixed point O in particular direction . in diagram shortest distance at end from O is 3 m and it is right of O so +. HENCE +3.0m
the answer is 1a as rearrange gives I = v divided by r