Answer:
An reversal in the magnetic fields of the north and south pole. This would be the most logical option for me...correct me if I'm wrong.
Explanation:
New seafloor is formed when magma is forced upward toward the surface at a mid-ocean.
There are NO true statements on the list you provided.
2000J
Explanation:
Given parameters:
Extension = 0.5m
Spring constant = 16000N/m
Unknown:
Energy stored in the bow string = ?
Solution:
The energy stored in a bow string is an elastic potential energy.
It can be calculated using the expression below;
Elastic energy =
K e²
Where k is the spring constant
e is the extension
Input the parameters;
Elastic energy =
K e²
=
x 16000 x 0.5²
= 2000J
learn more:
Potential energy brainly.com/question/10770261
#learnwithBrainly
Answer:
a.) the speed at the bottom is greater for the steeperhill
Explanation:
since the energy at the bottom of the steeper hilis greater

As we can see from above that v is higher when h ishigher.
Answer:
M[min] = M[basket+people+ balloon, not gas] * ΔR/R[b]
ΔR is the difference in density between the gas inside and surrounding the balloon.
R[b] is the density of gas inside the baloon.
====================================
Let V be the volume of helium required.
Upthrust on helium = Weight of the volume of air displaced = Density of air * g * Volume of helium = 1.225 * g * V
U = 1.225gV newtons
----
Weight of Helium = Volume of Helium * Density of Helium * g
W[h] = 0.18gV N
Net Upward force produced by helium, F = Upthrust - Weight = (1.225-0.18) gV = 1.045gV N -----
Weight of 260kg = 2549.7 N
Then to lift the whole thing, F > 2549.7
So minimal F would be 2549.7
----
1.045gV = 2549.7
V = 248.8 m^3
Mass of helium required = V * Density of Helium = 248.8 * 0.18 = 44.8kg (3sf)
=====
Let the density of the surroundings be R
Then U-W = (1-0.9)RgV = 0.1RgV
So 0.1RgV = 2549.7 N
V = 2549.7 / 0.1Rg
Assuming that R is again 1.255, V = 2071.7 m^3
Then mass of hot air required = 230.2 * 0.9R = 2340 kg
Notice from this that M = 2549.7/0.9Rg * 0.1R so
M[min] = Weight of basket * (difference in density between balloon's gas and surroundings / density of gas in balloon)
M[min] = M[basket] * ΔR/R[b]