Answer:
a) F = 4.9 10⁴ N, b) F₁ = 122.5 N
Explanation:
To solve this problem we use that the pressure is transmitted throughout the entire fluid, being the same for the same height
1) pressure is defined by the relation
P = F / A
to lift the weight of the truck the force of the piston must be equal to the weight of the truck
∑F = 0
F-W = 0
F = W = mg
F = 5000 9.8
F = 4.9 10⁴ N
the area of the pisto is
A = pi r²
A = pi d² / 4
A = pi 1 ^ 2/4
A = 0.7854 m²
pressure is
P = 4.9 104 / 0.7854
P = 3.85 104 Pa
2) Let's find a point with the same height on the two pistons, the pressure is the same
where subscript 1 is for the small piston and subscript 2 is for the large piston
F₁ = 
the force applied must be equal to the weight of the truck
F₁ =
F₁ = (0.05 / 1) ² 5000 9.8
F₁ = 122.5 N
We know for a fact that D and A can be eliminated from the answer choices because those are both false. we know that both B and C are both very accurate knowing that wave B does have a higher pitch than wave A but also wave A has a louder sound wave than wave B. so i'd say the answer is (C).
The kinetic energy of the child at the bottom of the incline is 106.62 J.
The given parameters:
- <em>Mass of the child, m = 16 kg</em>
- <em>Length of the incline, L = 2 m</em>
- <em>Angle of inclination, θ = 20⁰</em>
The vertical height of fall of the child from the top of the incline is calculated as;

The gravitational potential energy of the child at the top of the incline is calculated as;

Thus, based on the principle of conservation of mechanical energy, the kinetic energy of the child at the bottom of the incline is 106.62 J since no energy is lost to friction.
Learn more about conservation of mechanical energy here: brainly.com/question/332163
Answer:
g_x = 3.0 m / s^2
Explanation:
Given:
- Change in length of spring [email protected] = 22.6 cm
- Time taken for 11 oscillations t = 19.0 s
Find:
- The value of gravitational free fall g_x at plant X:
Solution:
- We will assume a simple harmonic motion of the mass for which Time is:
T = 2*pi*sqrt(k / m ) ...... 1
- Sum of forces in vertical direction @equilibrium is zero:
F_net = k*x - m*g_x = 0
(k / m) = (g_x / x) .... 2
- substitute Eq 2 into Eq 1:
2*pi / T = sqrt ( g_x / x )
g_x = (2*pi / T )^2 * x
- Evaluate g_x:
g_x = (2*pi / (19 / 11) )^2 * 0.226
g_x = 3.0 m / s^2