Answer:
16.02 g
Explanation:
the balanced equation for the decomposition of CuCO₃ is as follows
CuCO₃ --> CuO + CO₂
molar ratio of CuCO₃ to CO₂ is 1:1
number of CuCO₃ moles decomposed - 45 g / 123.5 g/mol = 0.364 mol
according to the molar ratio
1 mol of CuCO₃ decomposes to form 1 mol of CO₂
therefore 0.364 mol of CuCO₃ decomposes to form 0.364 mol of CO₂
number of CO₂ moles produced - 0.364 mol
therefore mass of CO₂ produced - 0.364 mol x 44 g/mol = 16.02 g
16.02 g of CO₂ produced
Answer: The one listed below that's NOT an example of potential energy is mechanical energy. Mechanical energy is categorized as a kinetic energy with light, sound, and thermal/heat energy.
HOPE THIS HELPS
Answer:
Earthquakes are measured using instruments called seismometers, that detect the vibrations caused by seismic waves as they travel through the crust. Also, laser beams can be used
Explanation:
<span>that it is cooler than the lithosphere.</span>
Answer: The approximate molecular mass of the polypeptide is 856 g/mol
Explanation:
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
Or,
where,
= osmotic pressure of the solution = 4.19 torr
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (polypeptide) = 0.327 g
Volume of solution = 1.70 L
R = Gas constant =
T = temperature of the solution =
Putting values in above equation, we get:
Hence, the molar mass of the polypeptide is 856 g/mol