Answer:
The boiling point of the substances
Explanation:
Because Boiling point is an intensive property.
Answer:
0.0253 M/s
Explanation:
From the reaction
N₂ + 3H₂ → 2NH₃
The rate of reaction can be written as
Rate = -
= -
= + ![\frac{1}{2} \frac{d[NH_3]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7Bd%5BNH_3%5D%7D%7Bdt%7D)
From the above rate equation we can conclude that the rate of reaction of N₂ is equal to one third of the rate of reaction of H₂,
So,
Rate of reaction of molecular nitrogen = 
Upon calculation, we get rate of reaction of molecular nitrogen = 0.0253 M/s
7.91 g/ml is the density of the iron piece of 28.5 gms.
Explanation:
The density of a substance is defined as the volume it occupies. It tells the matter present in a substance.
The density is mass per unit volume and is denoted by p.
The formula for density is given by:
density (p) = 
Data given is :
mass= 28.5 grams
V1 = 45.5 ml
V2= 49.1 ml
The initial volume of water was 45.5 ml, when iron piece of 28.5 grams was added the final volume was 49.1 ml.
Putting the values in the equation of density
p = 
p = 7.91 g/ml
Since iron is a dense material it will occupy less volume
Answer:
7.5 moles
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
3Cu + 2H3PO4 —> Cu3(PO4)2 + 3H2
From the balanced equation above,
3 moles of Cu reacted with 2 moles of H3PO4.
Therefore, Xmol of Cu will react with 5 moles of H3PO4 i.e
Xmol of Cu = (3 x 5)/2
Xmol of Cu = 7.5 moles
Therefore, 7.5 moles of Cu are needed to react with 5 moles of H3PO4.
Answer:
1.The metalloids; boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), polonium (Po) and astatine (At) are the elements found along the step like line between metals and non-metals of the periodic table.
2.hydrogen
The elements generally classified as nonmetals include one element in group 1 (hydrogen);
3.element iron
The element iron is in group 8, and therefore has two or three apparent valence electrons.