d. Fe(s) and Al(s)
<h3>Further explanation</h3>
In the redox reaction, it is also known
Reducing agents are substances that experience oxidation
Oxidizing agents are substances that experience reduction
The metal activity series is expressed in voltaic series
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The more to the left, the metal is more reactive (easily release electrons) and the stronger reducing agent
The more to the right, the metal is less reactive (harder to release electrons) and the stronger oxidizing agent
So that the metal located on the left can push the metal on the right in the redox reaction
The electrodes which are easier to reduce than hydrogen (H), have E cells = +
The electrodes which are easier to oxidize than hydrogen have a sign E cell = -
So the above metals or metal ions will reduce Pb²⁺ (aq) will be located to the left of the Pb in the voltaic series or which have a more negative E cell value (greater reduction power)
The metal : d. Fe(s) and Al(s)
Weight of sodium thiosulfate = 76.148 - 8.2
= 67.948 g.
Concentration of the solution = 67.948 / 172.7
= 0.393 g / mL. to the nearest thousandth . (answer).
Answer:
F = 800 N
Explanation:
Given data:
Mass = 80 Kg
Acceleration = 10 m/s²
Force = ?
Solution:
Formula:
<em>F = m × a
</em>
F = force
m = mass
a = acceleration
Now we will put the values in formula:
<em>F = m × a
</em>
F = 80 kg <em>× </em>10 m/s²
F = 800 kg.m/s²
kg.m/s² = N
F = 800 N
Answer:

Explanation:
Hello,
In this case, during titration at the equivalence point, we find that the moles of the base equals the moles of the acid:

That it terms of molarities and volumes we have:

Next, solving for the volume of lithium hydroxide we obtain:

Best regards.
i may be wrong but Use the normal boiling points: propane, C3H8, –42.1˚C; butane, C4H10, –0.5˚C; pentane, C5H12, 36.1˚C; hexane, C6H14, 68.7˚C; heptane, C7H16, 98.4˚C; to estimate the normal boiling point of octane, C8H18.