Explanation:
Given that,
Area enclosed by a brass bracelet, 
Initial magnetic field, 
The electrical resistance around the circumference of the bracelet is, R = 0.02 ohms
Final magnetic field, 
Time, 
The expression for the induced emf is given by :
= magnetic flux
So, the induced emf in the bracelet is 0.678 volts.
Using ohm's law to find the induced current as :
V = IR


I = 33.9 A
or
I = 34 A
So, the induced current in the bracelet is 34 A. Hence, this is the required solution.
Answer:

Explanation:
Let the speed of light in vacuum is c and the speed of light in medium is v. Let the angle of incidence is i.
By using the definition of refractive index
refractive index of the medium is given by
n = speed of light in vacuum / speed of light in medium
n = c / v ..... (1)
Use Snell's law
n = Sin i / Sin r
Where, r be the angle of refraction
From equation (1)
c / v = Sin i / Sin r
Sin r = v Sin i / c

Answer:
P₂ = 2 P₁
we conclude that in the second time the power used is double that in the first rise
Explanation:
In this exercise we are asked the power to climb the stairs, if we assume that we go up with constant speed, we use an energy equal to the potential energy due to the difference in height of the stairs, as this height is constant the potential energy does not change and therefore therefore the energy used by us does not change either.
Now we can analyze the required power,
P = W / t
From the analysis of the previous paragraph the work is equal to the energy used, according to the work energy theorem,
therefore the first time the power is
P₁ = E / 10
P₁ = 0.1 E
for the second time the power is
P₂ = E / 5
P₂ = 0.2 E
we see that the power in the second case is
P₂ = 2 P₁
Therefore, we conclude that in the second time the power used is double that in the first rise.
Distance traveled(in a certain direction) and time
Velocity is all about direction traveled in comparison to speed which is just distance with out direction.
Hope this helps you
B: Extension Lines! You could have just searched this up on google