830 mL
The volume of an 2.3 m solution with 212 grams of calcium chloride (cacl2) dissolved is 830 mL.
The solution has a concentration of 2.3 mol/L.
<h3>a) Moles of CaCl2</h3>
Molar mass of CaCl2 = 110.98 g/mol
Moles of CaCl2 = 212 g CaCl2 x (1 mol CaCl2/110.98 g CaCl2)
= 1.910 mol CaCl2
<h3>b) Volume of solution</h3>
V = 1.910 mol CaCl2 x (1 L solution/2.3 mol CaCl2) = 0.83 L solution
= 830 mL solution
<h3>How much CaCl2 is there in the solution by molarity?</h3>
- The number of moles is 0.125 x 2 = 0.25 mol since the molarity is 2.0M.
- To get the answer of 27.745 g, simply multiply this by the molar mass of calcium chloride, which is 110.98 g/mol.
To learn more about CaCl2 solution visit:
brainly.com/question/1053707
#SPJ4
Answer:
<em>Rate</em> = k * [C₄H₆]²
Explanation:
It is possible to write the reaction as:
The differential rate law for a simple second order reaction of the type 2A → B is:
With the above information in mind, the rate law for the reaction of butadiene would be:
- <em>Rate</em> = k * [C₄H₆]²
Answer:
Standard reduction potential is an intensive property---- True
Reduction takes place at the anode ----- False
The half reaction with the lower standard reduction potential will be at the cathode in a galvanic cell ------false
The half reaction with the higher standard reduction potential will be at the cathode in a galvanic cell ------ True
Explanation:
An intensive property is a property of a substance which is inherent in it and part of its nature. It does not depend on the amount of substance present in the substance. Standard reduction potential is an intensive property.
In a galvanic cell, oxidation takes place at the anode and reduction takes place at the cathode. At the anode, the electrode potential is more negative (an oxidation) while at the cathode the reduction potential is less negative (a reduction).