Answer:
Lead
Explanation:
Lower the specific heat faster it will heat, meaning liquid will heat up slowly than any other material mentioned above. Thus lead will heat up faster
Answer: If it was 3 mol of solute in 2 L of solution it would be 1.5 mol/L.
However when the solute dissolves in the water creating the solution, the volume increases. So 3 mol of solute in 2 L of water creates more than 2 L of solution.
The correct method for making a 3 mol/L solution would be to place some water into a two liter volume container. Dissolve all 3 mol of the solute into the water. Then add water to the 2 L mark. Now there is 3 mol of solute and 2 L of solution.
Explanation: I hope this helps XDDDD
Answer:
Explanation: “Insoluble” generally means that a substance does not dissolve in water. Some examples include: sand, fats, wood, metals, and plastic. When we put them in water and try to mix them, they will not dissolve.
Explanation:
Answer:
How many grams of potassium chloride, KCl, must be dissolved in 500.0 mL of solution to produce a 1.5 M solution? Answer: g 4. What is the molarity of a solution in which 84.0 grams of sodium chloride, NaCl, is dissolved in 1.25 liters of solution? Answer: M 5.
Explanation:
Answer:
The initial rate of the reaction between substances P and Q was measured in a series of
experiments and the following rate equation was deduced.
Complete the table of data below for the reaction between P and Q
Explanation:
Given rate of the reaction is:
![rate= k[P]^{2} [Q]\\=>[Q]=\frac{rate}{k.[P]^{2} } \\and \\\\\\\ [P]=\sqrt{\frac{rate}{k.[Q]} }](https://tex.z-dn.net/?f=rate%3D%20k%5BP%5D%5E%7B2%7D%20%5BQ%5D%5C%5C%3D%3E%5BQ%5D%3D%5Cfrac%7Brate%7D%7Bk.%5BP%5D%5E%7B2%7D%20%7D%20%5C%5Cand%20%5C%5C%5C%5C%5C%5C%5C%20%5BP%5D%3D%5Csqrt%7B%5Cfrac%7Brate%7D%7Bk.%5BQ%5D%7D%20%7D)
Substitute the given values in this formulae to get the [P], [Q] and rate values.
From the first row,
the value of k can be calulated:
![k=\frac{rate}{[P]^{2}[Q] } \\ =\frac{4.8*10^-3}{(0.2)^{2} 2. (0.30)} \\ =0.4](https://tex.z-dn.net/?f=k%3D%5Cfrac%7Brate%7D%7B%5BP%5D%5E%7B2%7D%5BQ%5D%20%7D%20%5C%5C%20%20%3D%5Cfrac%7B4.8%2A10%5E-3%7D%7B%280.2%29%5E%7B2%7D%202.%20%280.30%29%7D%20%5C%5C%20%3D0.4)
Second row:
2. Rate value:

3.Third row:
![[Q]=\frac{rate}{k.[P]^{2} } \\ =9.6*10^-3 / (0.4 *(0.40)^{2} \\ =0.15mol.dm^{-3}](https://tex.z-dn.net/?f=%5BQ%5D%3D%5Cfrac%7Brate%7D%7Bk.%5BP%5D%5E%7B2%7D%20%7D%20%5C%5C%20%20%20%20%20%3D9.6%2A10%5E-3%20%2F%20%280.4%20%2A%280.40%29%5E%7B2%7D%20%5C%5C%20%20%20%20%3D0.15mol.dm%5E%7B-3%7D)
4. Fourth row:
![[P]=\sqrt{\frac{rate}{k.[Q]} }\\=>[P]=\sqrt{\frac{19.2*10^-3}{0.60*0.4} } \\=>[P]=0.283mol.dm^{-3}](https://tex.z-dn.net/?f=%5BP%5D%3D%5Csqrt%7B%5Cfrac%7Brate%7D%7Bk.%5BQ%5D%7D%20%7D%5C%5C%3D%3E%5BP%5D%3D%5Csqrt%7B%5Cfrac%7B19.2%2A10%5E-3%7D%7B0.60%2A0.4%7D%20%7D%20%5C%5C%3D%3E%5BP%5D%3D0.283mol.dm%5E%7B-3%7D)