Answer:
BRAINLIEST?
Explanation:
Ammonia is a typical weak base. Ammonia itself obviously doesn't contain hydroxide ions, but it reacts with water to produce ammonium ions and hydroxide ions. My findings said that ammonia is a weak base, potassium hydroxide is a strong base, vinegar is a weak acid and ethyl alcohol is a weak acid.
Vinegar and ethyl alcohol are eliminated as they are acids. The question is on bases.... Potassium hydroxide is a strong base. So we are left with ammonia, being a weak base.
A is your answer
Answer:
c. a phosphodiester bond between the 3' and 5' hydroxyl groups of neighboring sugars
Explanation:
Phosphodiester bond is the bond which is formed between the hydroxyl group of one nucleotide to the phosphate group of the another nucleotide. These are ester bonds. These bonds are central to all the life which is in existence on Earth. These bonds forms the backbone of the strands of the nucleic acid.
The bond is formed by the linkage of 3' carbon atom of one of the sugar unit to the 5' carbon atom of the another succeeding sugar unit.
<u>Hence, the answer is:- c. a phosphodiester bond between the 3' and 5' hydroxyl groups of neighboring sugars</u>
DE = dH - PdV
<span>2 H2O(g) → 2 H2(g) + O2(g) </span>
<span>You can see that there are 2 moles of gas in the reactants and 3 moles of gas in the products. </span>
<span>1 moles of ideal gas occupies the same volume as 1 mole of any other ideal gas under the same conditions of temp and pressure. </span>
<span>Since it is done under constant temp and pressure that means the volume change will be equal to the volume of 1 mole of gas </span>
<span>2 moles reacts to form 3 moles </span>
<span>The gas equation is </span>
<span>PV = nRT </span>
<span>P = pressure </span>
<span>V = volume (unknown) </span>
<span>n = moles (1) </span>
<span>R = gas constant = 8.314 J K^-1 mol^-1 </span>
<span>- the gas constant is different for different units of temp and pressure (see wikki link) in this case temp and pressure are constant, and we want to put the result in an equation that has Joules in it, so we select 8.314 JK^-1mol^-1) </span>
<span>T = temp in Kelvin (kelvin = deg C + 273.15 </span>
<span>So T = 403.15 K </span>
<span>Now, you can see that PV is on one side of the equation, and we are looking to put PdV in our dE equation. So we can say </span>
<span>dE = dH -dnRT (because PV = nRT) </span>
<span>Also, since the gas constant is in the unit of Joules, we need to convert dH to Joules </span>
<span>dH = 483.6 kJ/mol = 483600 Joules/mol </span>
<span>dE = 483600 J/mol - (1.0 mol x 8.314 J mol^-1K-1 x 403.15 K) </span>
<span>dE = 483600 J/mol - 3351.77 J </span>
<span>dE = 480248.23 J/mol </span>
<span>dE = 480.2 kJ/mol </span>
Answer: The density of 0.50 grams of gaseous carbon stored under 1.50 atm of pressure at a temperature of -20.0 °C is 0.867 g/L.
Explanation:
- d = m/V, where d is the density, m is the mass and V is the volume.
- We have the mass m = 0.50 g, so we must get the volume V.
- To get the volume of a gas, we apply the general gas law PV = nRT
P is the pressure in atm (P = 1.5 atm)
V is the volume in L (V = ??? L)
n is the number of moles in mole, n = m/Atomic mass, n = 0.50/12.0 = 0.416 mole.
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature in K (T(K) = T(°C) + 273 = -20.0 + 273 = 253 K).
- Then, V = nRT/P = (0.416 mol)(0.082 L.atm/mol.K)(253 K) / (1.5 atm) = 0.576 L.
- Now, we can obtain the density; d = m/V = (0.50 g) / (0.576 L) = 0.867 g/L.
Answer: 824.6 g of NaCl are produced from 500.0 g of chlorine.
Explanation:
To calculate the moles :
According to stoichiometry :
1 mole of
produce = 2 moles of
Thus 7.04 moles of
will produce=
of
Mass of
Thus 824.6 g of NaCl are produced from 500.0 g of chlorine.