Answer:
230hz
Explanation:
Hello,
To solve this question, we gave to use the relationship between velocity-frequency-wavelength to find the frequency in this question.
V = Fλ
V = velocity or speed of the wave
F = frequency of the wave
λ = wavelength of the wave
Data;
V = 414m/s
λ = 1.8m
f = ?
V = fλ
f = v/λ
f = 414/1.8
f = 230hz
The frequency of the wave is 230hz
Earth contains huge quantities of water in its oceans, lakes, rivers, the atmosphere, and believe it or not, in the rocks of the inner Earth. Over millions of years, much of this water is recycled between the inner Earth, the oceans and rivers, and the atmosphere. This cycling process means that freshwater is constantly made available to Earth's surface where we all live. Our planet is also very efficient at keeping this water. Water, as a vapor in our atmosphere, could potentially escape into space from Earth. But the water doesn't escape because certain regions of the atmosphere are extremely cold. (At an altitude of 15 kilometers, for example, the temperature of the atmosphere is as low as -60° Celsius!) At this frigid temperature, water forms solid crystals that fall back to Earth's surface.
Many people live faraway from freshwater sources. They need to carry their water home.
While our planet as a whole may never run out of water, it's important to remember that clean freshwater is not always available where and when humans need it. In fact, half of the world's freshwater can be found in only six countries. More than a billion people live without enough safe, clean water.
Also, every drop of water that we use continues through the water cycle. Stuff we put down the drain ends up in someone or something else's water. We can help protect the quality of our planet's freshwater by using it more wisely.
The same as alittle molecule but it would be in a mase quantity...
Answer:It would be orange
Explanation:I hope this helps
Answer:
ΔH = +155.6 kJ
Explanation:
The Hess' Law states that the enthalpy of the overall reaction is the sum of the enthalpy of the step reactions. To do the addition of the reaction, we first must reorganize them, to disappear with the intermediaries (substances that are not presented in the overall reaction).
If the reaction is inverted, the signal of the enthalpy changes, and if its multiplied by a constant, the enthalpy must be multiplied by the same constant. Thus:
N₂(g) + O₂(g) → 2NO(g) ΔH = +180.7 kJ
2NO(g) + O₂(g) → 2NO₂(g) ΔH = -113.1 kJ
2N₂O(g) → 2N₂(g) + O₂(g) ΔH = -163.2 kJ
The intermediares are N₂ and O₂, thus, reorganizing the reactions:
N₂(g) + O₂(g) → 2NO(g) ΔH = +180.7 kJ
NO₂(g) → NO(g) + (1/2)O₂(g) ΔH = +56.55 kJ (inverted and multiplied by 1/2)
N₂O(g) → N₂(g) + (1/2)O₂(g) ΔH = -81.6 kJ (multiplied by 1/2)
------------------------------------------------------------------------------------
N₂O(g) + NO₂(g) → 3NO(g)
ΔH = +180.7 + 56.55 - 81.6
ΔH = +155.6 kJ